Skip to main content Accessibility help
×
  • Cited by 148
Publisher:
Cambridge University Press
Online publication date:
April 2015
Print publication year:
2015
Online ISBN:
9781139871495

Book description

Catalan numbers are probably the most ubiquitous sequence of numbers in mathematics. This book gives for the first time a comprehensive collection of their properties and applications to combinatorics, algebra, analysis, number theory, probability theory, geometry, topology, and other areas. Following an introduction to the basic properties of Catalan numbers, the book presents 214 different kinds of objects counted by them in the form of exercises with solutions. The reader can try solving the exercises or simply browse through them. Some 68 additional exercises with prescribed difficulty levels present various properties of Catalan numbers and related numbers, such as Fuss-Catalan numbers, Motzkin numbers, Schröder numbers, Narayana numbers, super Catalan numbers, q-Catalan numbers and (q,t)-Catalan numbers. The book ends with a history of Catalan numbers by Igor Pak and a glossary of key terms. Whether your interest in mathematics is recreation or research, you will find plenty of fascinating and stimulating facts here.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] C., Aebi and G., Cairns, Catalan numbers, primes, and twin primes, Elem. Math. 63 (2008), 153–164.
[2] M., Aigner, Catalan and other numbers, in Algebraic Combinatorics and Computer Science, Springer, Berlin, 2001, 347–390.
[3] D., André, Solution directe du problème résolu par M. Bertrand, Comptes Rendus Acad. Sci. Paris 105 (1887), 436–437.
[4] G. E., Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.
[5] É., Barbier, Généralisation du problème résolu par M.J. Bertrand, Comptes Rendus Acad. Sci. Paris 105 (1887), 407.
[6] E. T., Bell, The iterated exponential integers, Annals of Math. 39 (1938), 539–557.
[7] J., Bertrand, Solution d'une problème, Comptes Rendus Acad. Sci. Paris 105 (1887), 369.
[8] M.J., Binet, Réflexions sur le problème dédeterminer le nombre de manières dont une figure rectiligne peut être partagées en triangles au moyen de ses diagonales, J. Math. Pures Appl. 4 (1839), 79–90.
[9] W. G., Brown, Historical note on a recurrent combinatorial problem, Amer. Math. Monthly 72 (1965), 973–979.
[10] B., Bru, Les leçons de calcul des probabilités de Joseph Bertrand, J. Électron. Hist. Probab. Stat. 2 (2006), no. 2, 44 pp.
[11] N. G., de Bruijn and B. J. M., Morselt, A note on plane trees, J. Combinatorial Theory 2 (1967), 27–34.
[12] R. S., Calinger, Leonhard Euler: life and thought, in Leonhard Euler: Life, Work and Legacy (R. E., Bradley and E., Sandifer, editors), Elsevier, Amsterdam, 2007.
[13] P. J., Cameron, LTCC course notes on Enumerative Combinatorics, Lecture 3: Catalan numbers (Autumn 2013); available at http://www.maths.qmul.ac.uk/~pjc/ec/.
[14] E. C., Catalan, Note sur une équation aux différences finies, J. Math. pure et appliquées 3 (1838), 508–516.
[15] E. C., Catalan, Solution nouvelle de cette question: un polygone étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales?, J. Math. Pures Appl. 4 (1839), 91–94.
[16] E., Catalan, Sur les nombres de Segner, Rend. Circ. Mat. Palermo 1 (1887), 190–201.
[17] A., Cayley, On the analytical forms called trees II, Philos. Mag. 18 (1859), 374–378.
[18] A., Cayley, On the partitions of a polygon, Proc. London Math. Soc. 22 (1891), 237–262.
[19] A., Dvoretzky and Th., Motzkin, A problem of arrangements, Duke Math. J. 14 (1947), 305–313.
[20] L., Euler, Summary of [61] in the same volume of Novi Commentarii, 13–15.
[21] E. A., Fellmann, Leonhard Euler, Birkhäuser, Basel, 2007.
[22] N., Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Novi Acta Acad. Sci. Petrop. 9 (1795), 243–251; available at [55].
[23] M., Gardner, Mathematical Games, Catalan numbers: an integer sequence that materializes in unexpected places, Scientific Amer. 234, no. 6 (June 1976), 120–125, 132.
[24] I. M., Gelfand, M. M., Kapranov, and A. V., Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, Cambridge, Massachusetts, 1994.
[25] H. W., Gould, Bell and Catalan Numbers: A Research Bibliography of Two Special Number Sequences, Revised 2007 edition; available at http://tinyurl.com/opknlh8.
[26] I. P., Goulden and D. M., Jackson, Combinatorial Enumeration, John Wiley, New York, 1983; reissued by Dover, New York, 2004.
[27] J.A.S., Growney, Finitely generated free groupoids, PhD thesis, University of Oklahoma, 1970.
[28] J. A., Grunert, Ueber die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein neck durch Diagonales in lauter mecke zerlegen lässt, mit Bezug auf einige Abhandlungen der Herren Lamé, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathématiques Pure et Appliquées, publié par Joseph Liouville, Vols. 3, 4, Arch. Math. Physik 1 (1841), 193–203.
[29] M., Hall, Combinatorial Theory, Blaisdell, Waltham, Massachusetts, 1967.
[30] K., Humphreys, A history and a survey of lattice path enumeration, J. Statist. Plann. Inference 140 (2010), 2237–2254.
[31] M., Kauers and P., Paule, The Concrete Tetrahedron, Springer, Vienna, 2011.
[32] D. A., Klarner, Correspondences between plane trees and binary sequences, J. Combinatorial Theory 9 (1970), 401–411.
[33] D. E., Knuth, The Art of Computer Programming, vol. 1, Fundamental Algorithms, Addison-Wesley, Reading, Massachusetts, 1968; second ed., 1973.
[34] D. E., Knuth, The Art of Computer Programming, vol. 3, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1998.
[35] T., Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.
[36] H. S., Kim, Interview with Professor Stanley, Math Majors Magazine, vol. 1, no. 1 (December 2008), pp. 28–33; available at http://tinyurl.com/q423c6l.
[37] T. P., Kirkman, On the K-Partitions of the R-Gon and R-Ace, Phil. Trans. Royal Soc. 147 (1857), 217–272.
[38] S., Kotelnikow, Demonstatio seriei exhibitae in recensione VI. tomi VII. Commentariorum A. S. P., Novi Comment. Acad. Sci. Imp. Petropol. 10 (1766), 199–204; available at [55].
[39] G., Lamé, Extrait d'une lettre de M. Lamé à M. Liouville sur cette question: Un polygone convexe étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales?, Journal de Mathématiques pure et appliquées 3 (1838), 505–507.
[40] P. J., Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum 32 (1999/2000), 5–7.
[41] P. J., Larcombe, On pre-Catalan Catalan numbers: Kotelnikow (1766), Math. Today 35 (1999), no. 1, 25.
[42] P. J., Larcombe and P.D.C., Wilson, On the trail of the Catalan sequence, Mathematics Today 34 (1998), 114–117.
[43] P. J., Larcombe and P.D.C., Wilson, On the generating function of the Catalan sequence, Congr. Numer. 149 (2001), 97–108.
[44] J., Liouville, Remarques sur un mémoire de N. Fuss, J. Math. Pures Appl. 8 (1843), 391–394.
[45] E., Lucas, Théorie des Nombres, Gauthier-Villard, Paris, 1891.
[46] J. J., Luo, Antu Ming, the first inventor of Catalan numbers in the world, Neimengu Daxue Xuebao 19 (1988), 239–245 (in Chinese).
[47] J., Luo, Ming Antu and his power series expansions, in Seki, founder of modern mathematics in Japan, Springer, Tokyo, 2013, 299–310.
[48] P. A., MacMahon, Combinatory Analysis, vols. 1 and 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960, and by Dover, New York, 2004.
[49] J., McCammond, Noncrossing partitions in surprising locations, Amer. Math. Monthly 113 (2006), 598–610.
[50] D., Mirimanoff, A propos de l'interprétation géométrique du problème du scrutin, L'Enseignement Math. 23 (1923), 187–189.
[51] S. G., Mohanty, Lattice Path Counting and Applications, Academic Press, New York, 1979.
[52] T. V., Narayana, Lattice Path Combinatorics with Statistical Applications, Mathe-matical Expositions no. 23, University of Toronto Press, Toronto, 1979.
[53] E., Netto, Lehrbuch der Combinatorik, Teubner, Leipzig, 1901.
[54] I., Pak, Who computed Catalan numbers? (February 20, 2013), Who named Catalan numbers? (February 5, 2014), blog posts on Igor Pak's blog; available at http://igorpak.wordpress.com/.
[55] I., Pak, Catalan Numbers website, http://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm.
[56] M., Renault, Lost (and found) in translation, Amer. Math. Monthly 115 (2008), 358–363.
[57] J., Riordan, Combinatorial Identities, John Wiley, New York, 1968.
[58] O., Rodrigues, Sur le nombre de manières de décomposer un polygone en triangles au moyen de diagonales, J. Math. Pures Appl. 3 (1838), 547–548.
[59] O., Rodrigues, Sur le nombre de manières d'effectuer un produit de n facteurs, J. Math. Pures Appl. 3 (1838), 549.
[60] E., Schröder, Vier combinatorische Probleme, Z. für Math. Phys. 15 (1870), 361–376.
[61] J. A., Segner, Enumeratio modorum quibus figurae planae rectilinae per diagonales dividuntur in triangula, Novi Comment. Acad. Sci. Imp. Petropol. 7 (dated 1758/59, published in 1761), 203–210; available at [55].
[62] N.J.A., Sloane, A Handbook of Integer Sequences, Academic Press, New York, 1973.
[63] N.J.A., Sloane and S., Plouffe, The Encyclopedia of Integer Sequences, Academic Press, New York, 1995.
[64] R., Stanley, Enumerative Combinatorics, vol. 1, 2nd ed., Cambridge University Press, Cambridge, 2012.
[65] R., Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999.
[66] L., Takács, On the ballot theorems, in Advances in Combinatorial Methods and Applications to Probability and Statistics, Birkhäuser, Boston, Massachusetts, 1997, 97–114.
[67] U., Tamm, Olinde Rodrigues and combinatorics, in Mathematics and Social Utopias in France, Olinde Rodrigues and His Times (S., Altmann and E. L., Ortiz, eds.), American Mathematical Society and London Mathematical Society, Providence, Rhode Island, pp. 119–129.
[68] H. M., Taylor and R. C., Rowe, Note on a geometrical theorem, Proc. London Math. Soc. 13 (1882), 102–106.
[69] H.N.V., Temperley and E. H., Lieb, Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem, Proc. Royal Soc. London, Ser. A 322 (1971), 251–280.
[70] J. H., van Lint, Combinatorial Theory Seminar, Lecture Notes in Math. 382, Springer, Berlin, 1974, 131 pp.
[71] V. S., Varadarajan, Euler Through Time: A New Look at Old Themes, AMS, Providence, Rhode Island, 2006.
[72] W. A., Whitworth, Arrangements of m things of one sort and n things of another sort, under certain conditions of priority, Messenger of Math. 8 (1879), 105–114.
[73] B., Ycart, A case of mathematical eponymy: the Vandermonde determinant, Rev. Histoire Math. 19 (2013), 43–77.
[74] D., Zeilberger, Opinion 49 (Oct. 25, 2002); available at http://tinyurl.com/pzp8bvk.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.