Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-06T19:05:38.735Z Has data issue: false hasContentIssue false

Roles of cannabinoid CB1 and CB2 receptors in the modulation of psychostimulant responses

Published online by Cambridge University Press:  22 August 2022

P.H. Gobira*
Affiliation:
Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
S.R. Joca
Affiliation:
Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil Department of Biomedicine, Aarhus University, Aarhus, Denmark
F.A. Moreira
Affiliation:
Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
*
Author for correspondence: P.H. Gobira, Email: gobiraph@gmail.com

Abstract

Addiction to psychostimulant drugs, such as cocaine, D-amphetamine, and methamphetamine, is a public health issue that substantially contributes to the global burden of disease. Psychostimulant drugs promote an increase in dopamine levels within the mesocorticolimbic system, which is central to the rewarding properties of such drugs. Cannabinoid receptors (CB1R and CB2R) are expressed in the main areas of this system and implicated in the neuronal mechanisms underlying the rewarding effect of psychostimulant drugs. Here, we reviewed studies focusing on pharmacological intervention targeting cannabinoid CB1R and CB2R and their interaction in the modulation of psychostimulant responses.

Type
Review Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczyk, P, Miszkiel, J, Mccreary, AC, Filip, M, Papp, M and Przegalinski, E (2012) The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Research 1444(3), 4554.CrossRefGoogle ScholarPubMed
Ahmed, SH and Koob, GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387), 298300.Google Scholar
Al Mansouri, S, Ojha, S, Al Maamari, E, Al Ameri, M, Nurulain, SM and Bahi, A (2014) The cannabinoid receptor 2 agonist, beta-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacology Biochemistry and Behavior 124(4), 260268.Google Scholar
Anggadiredja, K, Nakamichi, M, Hiranita, T, Tanaka, H, Shoyama, Y, Watanabe, S and Yamamoto, T (2004) Endocannabinoid system modulates relapse to methamphetamine seeking: possible mediation by the arachidonic acid cascade. Neuropsychopharmacology 29(8), 14701478.Google Scholar
Aracil-Fernandez, A, Trigo, JM, Garcia-Gutierrez, MS, Ortega-Alvaro, A, Ternianov, A, Navarro, D, Robledo, P, Berbel, P, Maldonado, R, Manzanares, J (2012) Decreased cocaine motor sensitization and self-administration in mice overexpressing cannabinoid CB(2) receptors. Neuropsychopharmacology 37(7), 17491763.Google Scholar
Bardo, MT and Bevins, RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 153(1), 3143.Google Scholar
Berghuis, P, Rajnicek, AM, Morozov, YM, Ross, RA, Mulder, J, Urban, GM, Monory, K, Marsicano, G, Matteoli, M, Canty, A, Irving, AJ, Katona, I, Yanagawa, Y, Rakic, P, Lutz, B, Mackie, K, Harkany, T (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316(5828), 12121216.CrossRefGoogle ScholarPubMed
Boutrel, B and Koob, GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27(6), 11811194.Google Scholar
Caille, S and Parsons, LH (2006) Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology 31(4), 804813.Google Scholar
Canseco-Alba, A, Schanz, N, Sanabria, B, Zhao, J, Lin, Z, Liu, QR and Onaivi, ES (2019) Behavioral effects of psychostimulants in mutant mice with cell-type specific deletion of CB2 cannabinoid receptors in dopamine neurons. Behavioural Brain Research 360(5), 286297.CrossRefGoogle ScholarPubMed
Castelli, MP, Fadda, P, Casu, A, Spano, MS, Casti, A, Fratta, W and Fattore, L (2014) Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones. Current Pharmaceutical Design 20(13), 21002113.Google Scholar
Chaperon, F, Soubrie, P, Puech, AJ and Thiebot, MH (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology (Berl) 135(4), 324332.Google Scholar
Cheer, JF, Wassum, KM, Sombers, LA, Heien, ML, Ariansen, JL, Aragona, BJ, Phillips, PE and Wightman, RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. Journal of Neuroscience 27(4), 791795.Google Scholar
Chen, DJ, Gao, M, Gao, FF, Su, QX and Wu, J (2017) Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacologica Sinica 38(3), 312316.Google Scholar
Corbille, AG, Valjent, E, Marsicano, G, Ledent, C, Lutz, B, Herve, D and Girault, JA (2007) Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. Journal of Neuroscience 27(26), 69376947.CrossRefGoogle ScholarPubMed
Cossu, G, Ledent, C, Fattore, L, Imperato, A, Bohme, GA, Parmentier, M and Fratta, W (2001) Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behavioural Brain Research 118(1), 6165.CrossRefGoogle Scholar
Covey, DP, Bunner, KD, Schuweiler, DR, Cheer, JF and Garris, PA (2016) Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids. European Journal of Neuroscience 43(12), 16611673.Google Scholar
Covey, DP, Mateo, Y, Sulzer, D, Cheer, JF and Lovinger, DM (2017) Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology 124(Suppl. 1), 5261.CrossRefGoogle ScholarPubMed
De Vries, TJ, Shaham, Y, Homberg, JR, Crombag, H, Schuurman, K, Dieben, J, Vanderschuren, LJ and Schoffelmeer, AN (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nature Medicine 7(10), 11511154.Google Scholar
Delis, F, Polissidis, A, Poulia, N, Justinova, Z, Nomikos, GG, Goldberg, SR and Antoniou, K (2017) Attenuation of cocaine-induced conditioned place preference and motor activity via cannabinoid CB2 receptor agonism and CB1 receptor antagonism in rats. International Journal of Neuropsychopharmacology 20, 269278.Google ScholarPubMed
Devane, WA, Dysarz, FA, 3rd Johnson, MR, Melvin, LS and Howlett, AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Molecular Pharmacology 34, 605613.Google Scholar
Di Chiara, G (1998) A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. Journal of Psychopharmacology 12(1), 5467.Google Scholar
Farrell, MR, Schoch, H and Mahler, SV (2018) Modeling cocaine relapse in rodents: behavioral considerations and circuit mechanisms. Progress in Neuro-Psychopharmacology and Biological Psychiatry 87(4), 3347.Google Scholar
Fattore, L, Spano, MS, Altea, S, Fadda, P and Fratta, W (2010) Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and female rats: influence of ovarian hormones. British Journal of Pharmacology 160(3), 724735.CrossRefGoogle ScholarPubMed
Favrod-Coune, T and Broers, B (2010) The health effect of psychostimulants: a literature review. Pharmaceuticals (Basel) 3(7), 23332361.Google Scholar
Filip, M, Golda, A, Zaniewska, M, Mccreary, AC, Nowak, E, Kolasiewicz, W and Przegalinski, E (2006) Involvement of cannabinoid CB1 receptors in drug addiction: effects of rimonabant on behavioral responses induced by cocaine. Pharmacological Reports 58, 806819.Google ScholarPubMed
Garcia-Gutierrez, MS, Ortega-Alvaro, A, Busquets-Garcia, A, Perez-Ortiz, JM, Caltana, L, Ricatti, MJ, Brusco, A, Maldonado, R and Manzanares, J (2013) Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology 73(2), 388396.Google Scholar
Gardner, EL (2000) What we have learned about addiction from animal models of drug self-administration. American Journal on Addictions 9(4), 285313.CrossRefGoogle ScholarPubMed
Gerdeman, GL, Schechter, JB and French, ED (2008) Context-specific reversal of cocaine sensitization by the CB1 cannabinoid receptor antagonist rimonabant. Neuropsychopharmacology 33(11), 27472759.Google Scholar
Gessa, GL, Melis, M, Muntoni, AL and Diana, M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. European Journal of Pharmacology 341(1), 3944.Google Scholar
Gobira, PH, Oliveira, AC, Gomes, JS, Da Silveira, VT, Asth, L, Bastos, JR, Batista, EM, Issy, AC, Okine, BN, De Oliveira, AC, Ribeiro, FM, Del Bel, EA, Aguiar, DC, Finn, DP, Moreira, FA (2018) Opposing roles of CB1 and CB2 cannabinoid receptors in the stimulant and rewarding effects of cocaine. British Journal of Pharmacology.Google Scholar
Gobira, PH, Oliveira, AC, Gomes, JS, Da Silveira, VT, Asth, L, Bastos, JR, Batista, EM, Issy, AC, Okine, BN, De Oliveira, AC, Ribeiro, FM, Del Bel, EA, Aguiar, DC, Finn, DP, Moreira, FA (2019) Opposing roles of CB1 and CB2 cannabinoid receptors in the stimulant and rewarding effects of cocaine. British Journal of Pharmacology 176(10), 15411551.Google Scholar
Gong, JP, Onaivi, ES, Ishiguro, H, Liu, QR, Tagliaferro, PA, Brusco, A and Uhl, GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Research 1071(1), 1023.Google Scholar
Guegan, T, Cebria, JP, Maldonado, R and Martin, M (2016) Morphine-induced locomotor sensitization produces structural plasticity in the mesocorticolimbic system dependent on CB1-R activity. Addiction Biology 21(6), 11131126.CrossRefGoogle ScholarPubMed
Guzman, AS, Avalos, MP, De Giovanni, LN, Euliarte, PV, Sanchez, MA, Mongi-Bragato, B, Rigoni, D, Bollati, FA, Virgolini, MB, Cancela, LM (2021) CB1R activation in nucleus accumbens core promotes stress-induced reinstatement of cocaine seeking by elevating extracellular glutamate in a drug-paired context. Scientific Reports 11(1), 12964.CrossRefGoogle Scholar
Hanus, LO, Meyer, SM, Munoz, E, Taglialatela-Scafati, O and Appendino, G (2016) Phytocannabinoids: a unified critical inventory. Natural Product Reports 33(12), 13571392.Google Scholar
Harris, JE and Baldessarini, RJ (1973) Uptake of (3H)-catecholamines by homogenates of rat corpus striatum and cerebral cortex: effects of amphetamine analogues. Neuropharmacology 12(7), 669679.Google Scholar
He, XH, Jordan, CJ, Vemuri, K, Bi, GH, Zhan, J, Gardner, EL, Makriyannis, A, Wang, YL and Xi, ZX (2019) Cannabinoid CB1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol Sin 40, 365373.CrossRefGoogle ScholarPubMed
Hillard, CJ (2015) The endocannabinoid signaling system in the CNS: a primer. International Review of Neurobiology 125, 147.CrossRefGoogle ScholarPubMed
Houchi, H, Babovic, D, Pierrefiche, O, Ledent, C, Daoust, M and Naassila, M (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30(2), 339349.CrossRefGoogle ScholarPubMed
Howell, LL and Kimmel, HL (2008) Monoamine transporters and psychostimulant addiction. Biochemical Pharmacology 75(1), 196217.Google Scholar
Howlett, AC and Abood, ME (2017) CB1 and CB2 receptor pharmacology. Advances in Pharmacology 80(3), 169206.CrossRefGoogle Scholar
Howlett, AC, Barth, F, Bonner, TI, Cabral, G, Casellas, P, Devane, WA, Felder, CC, Herkenham, M, Mackie, K, Martin, BR, Mechoulam, R, Pertwee, RG (2002) International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacological Reviews 54, 161202.CrossRefGoogle ScholarPubMed
Howlett, AC, Bidaut-Russell, M, Devane, WA, Melvin, LS, Johnson, MR and Herkenham, M (1990) The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends in Neurosciences 13(10), 420423.CrossRefGoogle ScholarPubMed
Iyer, V, Slivicki, RA, Thomaz, AC, Crystal, JD, Mackie, K and Hohmann, AG (2020) The cannabinoid CB2 receptor agonist LY2828360 synergizes with morphine to suppress neuropathic nociception and attenuates morphine reward and physical dependence. European Journal of Pharmacology 886(1), 173544.CrossRefGoogle ScholarPubMed
Jing, L, Qiu, Y, Zhang, Y and Li, JX (2014) Effects of the cannabinoid CB(1) receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine-seeking behavior in rats. Drug and Alcohol Dependence 143, 251256.Google Scholar
Jordan, CJ, Feng, ZW, Galaj, E, Bi, GH, Xue, Y, Liang, Y, Mcguire, T, Xie, XQ and Xi, ZX (2020) Xie2-64, a novel CB2 receptor inverse agonist, reduces cocaine abuse-related behaviors in rodents. Neuropharmacology 176(107609), 108241.Google Scholar
Jordan, CJ and Xi, ZX (2019) Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neuroscience & Biobehavioral Reviews 98(Suppl. 1), 208220.Google Scholar
Kano, M (2014) Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 90(7), 235250.Google Scholar
Koob, GF and Volkow, ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1), 217238.Google Scholar
Kortleven, C, Fasano, C, Thibault, D, Lacaille, JC and Trudeau, LE (2011) The endocannabinoid 2-arachidonoylglycerol inhibits long-term potentiation of glutamatergic synapses onto ventral tegmental area dopamine neurons in mice. European Journal of Neuroscience 33(10), 17511760.Google Scholar
Kupferschmidt, DA, Klas, PG and Erb, S (2012) Cannabinoid CB1 receptors mediate the effects of corticotropin-releasing factor on the reinstatement of cocaine seeking and expression of cocaine-induced behavioural sensitization. British Journal of Pharmacology 167(1), 196206.CrossRefGoogle ScholarPubMed
Le Moal, M and Koob, GF (2007) Drug addiction: pathways to the disease and pathophysiological perspectives. European Neuropsychopharmacology 17(6-7), 377393.Google Scholar
Lesscher, HM, Hoogveld, E, Burbach, JP, Van Ree, JM and Gerrits, MA (2005) Endogenous cannabinoids are not involved in cocaine reinforcement and development of cocaine-induced behavioural sensitization. European Neuropsychopharmacology 15(1), 3137.Google Scholar
Li, X, Hempel, BJ, Yang, HJ, Han, X, Bi, GH, Gardner, EL and Xi, ZX (2021) Dissecting the role of CB1 and CB2 receptors in cannabinoid reward versus aversion using transgenic CB1- and CB2-knockout mice. European Neuropsychopharmacology 43, 3851.Google Scholar
Li, X, Hoffman, AF, Peng, XQ, Lupica, CR, Gardner, EL and Xi, ZX (2009) Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology (Berl) 204(1), 111.Google Scholar
Llorente-Berzal, A, Assis, MA, Rubino, T, Zamberletti, E, Marco, EM, Parolaro, D, Ambrosio, E and Viveros, MP (2013) Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure. Pharmacological Research 74(Suppl. 1), 2333.Google Scholar
Lopes, JB, Bastos, JR, Costa, RB, Aguiar, DC and Moreira, FA (2019) The roles of cannabinoid CB1 and CB2 receptors in cocaine-induced behavioral sensitization and conditioned place preference in mice. Psychopharmacology (Berl).Google Scholar
Lu, HC and Mackie, K (2016) An introduction to the endogenous cannabinoid system. Biological Psychiatry 79(7), 516525.Google Scholar
Mantsch, JR, Baker, DA, Funk, D, Le, AD and Shaham, Y (2016) Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41(1), 335356.Google Scholar
Manzanares, J, Cabanero, D, Puente, N, Garcia-Gutierrez, MS, Grandes, P and Maldonado, R (2018) Role of the endocannabinoid system in drug addiction. Biochemical Pharmacology 157(Suppl. 1), 108121.Google Scholar
Marinho, EA, Oliveira-Lima, AJ, Santos, R, Hollais, AW, Baldaia, MA, Wuo-Silva, R, Yokoyama, TS, Takatsu-Coleman, AL, Patti, CL, Longo, BM, Berro, LF, Frussa-Filho, R (2015) Effects of rimonabant on the development of single dose-induced behavioral sensitization to ethanol, morphine and cocaine in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry 58(8), 2231.Google Scholar
Martin, M, Ledent, C, Parmentier, M, Maldonado, R and Valverde, O (2000) Cocaine, but not morphine, induces conditioned place preference and sensitization to locomotor responses in CB1 knockout mice. European Journal of Neuroscience 12(11), 40384046.CrossRefGoogle Scholar
Martin-Garcia, E, Bourgoin, L, Cathala, A, Kasanetz, F, Mondesir, M, Gutierrez-Rodriguez, A, Reguero, L, Fiancette, JF, Grandes, P, Spampinato, U, Maldonado, R, Piazza, PV, Marsicano, G, Deroche-Gamonet, V (2016) Differential control of cocaine self-administration by GABAergic and glutamatergic CB1 cannabinoid receptors. Neuropsychopharmacology 41(9), 21922205.Google Scholar
Mccreary, AC, Muller, CP and Filip, M (2015) Psychostimulants: basic and clinical pharmacology. International Review of Neurobiology 120, 4183.CrossRefGoogle ScholarPubMed
Mcreynolds, JR, Doncheck, EM, Li, Y, Vranjkovic, O, Graf, EN, Ogasawara, D, Cravatt, BF, Baker, DA, Liu, QS, Hillard, CJ, Mantsch, JR (2018) Stress promotes drug seeking through glucocorticoid-dependent endocannabinoid mobilization in the prelimbic cortex. Biological Psychiatry 84(2), 8594.Google Scholar
Mcreynolds, JR, Doncheck, EM, Vranjkovic, O, Ganzman, GS, Baker, DA, Hillard, CJ and Mantsch, JR (2016) CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 233(1), 99109.Google Scholar
Mechoulam, R and Hanus, L (2000) A historical overview of chemical research on cannabinoids. Chemistry and Physics of Lipids 108(1-2), 113.CrossRefGoogle ScholarPubMed
Mereu, M, Tronci, V, Chun, LE, Thomas, AM, Green, JL, Katz, JL and Tanda, G (2015) Cocaine-induced endocannabinoid release modulates behavioral and neurochemical sensitization in mice. Addiction Biology 20(1), 91103.CrossRefGoogle ScholarPubMed
Moreira, FA and Crippa, JA (2009) The psychiatric side-effects of rimonabant. Revista Brasileira de Psiquiatria 31(2), 145153.Google Scholar
Munro, S, Thomas, KL and Abu-Shaar, M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441), 6165.Google Scholar
Navarro, M, Carrera, MR, Fratta, W, Valverde, O, Cossu, G, Fattore, L, Chowen, JA, Gomez, R, Del Arco, I, Villanua, MA, Maldonado, R, Koob, GF, Rodriguez De Fonseca, F (2001) Functional interaction between opioid and cannabinoid receptors in drug self-administration. Journal of Neuroscience 21(14), 53445350.Google Scholar
Nawata, Y, Kitaichi, K and Yamamoto, T (2016) Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251. Drug and Alcohol Dependence 160, 7681.Google Scholar
Nestler, EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47, 2432.CrossRefGoogle ScholarPubMed
Onaivi, ES, Ishiguro, H, Gong, JP, Patel, S, Perchuk, A, Meozzi, PA, Myers, L, Mora, Z, Tagliaferro, P, Gardner, E, Brusco, A, Akinshola, BE, Liu, QR, Hope, B, Iwasaki, S, Arinami, T, Teasenfitz, L, Uhl, GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Annals of the New York Academy of Sciences 1074(1), 514536.Google Scholar
Orio, L, Edwards, S, George, O, Parsons, LH and Koob, GF (2009) A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. Journal of Neuroscience 29(15), 48464857.Google Scholar
Panagis, G, Mackey, B and Vlachou, S (2014) Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future. Frontiers in Psychiatry 5(4), 92.Google Scholar
Parsons, LH and Hurd, YL (2015) Endocannabinoid signalling in reward and addiction. Nature Reviews Neuroscience 16(10), 579594.Google Scholar
Pertwee, RG (2006) Cannabinoid pharmacology: the first 66 years. British Journal of Pharmacology 147, S16371.Google Scholar
Pertwee, RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Current Medicinal Chemistry 17(14), 13601381.Google Scholar
Poncelet, M, Barnouin, MC, Breliere, JC, Le Fur, G and Soubrie, P (1999) Blockade of cannabinoid (CB1) receptors by 141716 selectively antagonizes drug-induced reinstatement of exploratory behaviour in gerbils. Psychopharmacology (Berl) 144(2), 144150.Google Scholar
Robertson, SD, Matthies, HJ and Galli, A (2009) A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Molecular Neurobiology 39(2), 7380.CrossRefGoogle Scholar
Rothman, RB and Baumann, MH (2003) Monoamine transporters and psychostimulant drugs. European Journal of Pharmacology 479(1-3), 2340.Google Scholar
Sanchis-Segura, C and Spanagel, R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addiction Biology 11(1), 238.Google Scholar
Shaham, Y, Shalev, U, Lu, L, De Wit, H and Stewart, J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168(1-2), 320.CrossRefGoogle ScholarPubMed
Shuster, L, Yu, G and Bates, A (1977) Sensitization to cocaine stimulation in mice. Psychopharmacology (Berl) 52(2), 185190.Google Scholar
Simonnet, A, Cador, M and Caille, S (2013) Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area. Addiction Biology 18(6), 930936.Google Scholar
Soria, G, Mendizabal, V, Tourino, C, Robledo, P, Ledent, C, Parmentier, M, Maldonado, R and Valverde, O (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30(9), 16701680.Google Scholar
Steketee, JD and Kalivas, PW (2011) Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacological Reviews 63(2), 348365.CrossRefGoogle ScholarPubMed
Sulzer, D, Sonders, MS, Poulsen, NW and Galli, A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Progress in Neurobiology 75(6), 406433.Google Scholar
Tung, LW, Lu, GL, Lee, YH, Yu, L, Lee, HJ, Leishman, E, Bradshaw, H, Hwang, LL, Hung, MS, Mackie, K, Zimmer, A, Chiou, LC (2016) Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nature Communications 7(1), 12199.Google Scholar
Unodc (2021) World Drug Report. United Nations Office on Drug and Crime. Vienna, Austria: Vienna International Centre, United Nations Office on Drugs and Crime.Google Scholar
Van Sickle, MD, Duncan, M, Kingsley, PJ, Mouihate, A, Urbani, P, Mackie, K, Stella, N, Makriyannis, A, Piomelli, D, Davison, JS, Marnett, LJ, Di Marzo, V, Pittman, QJ, Patel, KD, Sharkey, KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310(5746), 329332.Google Scholar
Vaughn, LK, Mantsch, JR, Vranjkovic, O, Stroh, G, Lacourt, M, Kreutter, M and Hillard, CJ (2012) Cannabinoid receptor involvement in stress-induced cocaine reinstatement: potential interaction with noradrenergic pathways. Neuroscience 204(Suppl 1), 117124.Google Scholar
Vinklerova, J, Novakova, J and Sulcova, A (2002) Inhibition of methamphetamine self-administration in rats by cannabinoid receptor antagonist AM 251. Journal of Psychopharmacology 16(2), 139143.Google Scholar
Vlachou, S and Panagis, G (2014) Regulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals. Current Pharmaceutical Design 20(13), 20722088.Google Scholar
Volkow, ND and Morales, M (2015) The brain on drugs: from reward to addiction. Cell 162(4), 712725.Google Scholar
Wang, H, Treadway, T, Covey, DP, Cheer, JF and Lupica, CR (2015) Cocaine-induced endocannabinoid mobilization in the ventral tegmental area. Cell Reports 12(12), 19972008.CrossRefGoogle ScholarPubMed
Ward, SJ, Rosenberg, M, Dykstra, LA and Walker, EA (2009) The CB1 antagonist rimonabant (SR141716) blocks cue-induced reinstatement of cocaine seeking and other context and extinction phenomena predictive of relapse. Drug and Alcohol Dependence 105(3), 248255.Google Scholar
Wee, S, Specio, SE and Koob, GF (2007) Effects of dose and session duration on cocaine self-administration in rats. Journal of Pharmacology and Experimental Therapeutics 320(3), 11341143.CrossRefGoogle ScholarPubMed
Wenzel, JM and Cheer, JF (2018) Endocannabinoid regulation of reward and reinforcement through interaction with dopamine and endogenous opioid signaling. Neuropsychopharmacology 43(1), 103115.Google Scholar
Wise, RA and Koob, GF (2014) The development and maintenance of drug addiction. Neuropsychopharmacology 39(2), 254262.Google Scholar
Wiskerke, J, Pattij, T, Schoffelmeer, AN and De Vries, TJ (2008) The role of CB1 receptors in psychostimulant addiction. Addiction Biology 13(2), 225238.Google Scholar
Xi, ZX, Gilbert, JG, Peng, XQ, Pak, AC, Li, X and Gardner, EL (2006) Cannabinoid CB1 receptor antagonist AM251 inhibits cocaine-primed relapse in rats: role of glutamate in the nucleus accumbens. Journal of Neuroscience 26(33), 85318536.Google Scholar
Xi, ZX, Peng, XQ, Li, X, Song, R, Zhang, HY, Liu, QR, Yang, HJ, Bi, GH, Li, J, Gardner, EL (2011) Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nature Neuroscience 14(9), 11601166.Google Scholar
Xi, ZX, Spiller, K, Pak, AC, Gilbert, J, Dillon, C, Li, X, Peng, XQ and Gardner, EL (2008) Cannabinoid CB1 receptor antagonists attenuate cocaine’s rewarding effects: experiments with self-administration and brain-stimulation reward in rats. Neuropsychopharmacology 33(7), 17351745.Google Scholar
Yu, LL, Zhou, SJ, Wang, XY, Liu, JF, Xue, YX, Jiang, W and Lu, L (2011) Effects of cannabinoid CB(1) receptor antagonist rimonabant on acquisition and reinstatement of psychostimulant reward memory in mice. Behavioural Brain Research 217(1), 111116.Google Scholar
Zhang, HY, Bi, GH, Li, X, Li, J, Qu, H, Zhang, SJ, Li, CY, Onaivi, ES, Gardner, EL, Xi, ZX, Liu, QR (2015) Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology 40(4), 10371051.Google Scholar
Zhang, HY, Gao, M, Liu, QR, Bi, GH, Li, X, Yang, HJ, Gardner, EL, Wu, J and Xi, ZX (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proceedings of the National Academy of Sciences of the United States of America 111, E500715.Google Scholar
Zhang, M, Dong, L, Zou, H, Li, J, Li, Q, Wang, G and Li, H (2018) Effects of cannabinoid type 2 receptor agonist AM1241 on morphine-induced antinociception, acute and chronic tolerance, and dependence in mice. Journal of Pain 19(10), 11131129.CrossRefGoogle ScholarPubMed
Zlebnik, NE and Cheer, JF (2016) Drug-induced alterations of endocannabinoid-mediated plasticity in brain reward regions. Journal of Neuroscience 36(40), 1023010238.Google Scholar
Zuardi, AW (2006) History of cannabis as a medicine: a review. Braz J Psychiatry 28(2), 153157.Google Scholar