Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T14:14:45.031Z Has data issue: false hasContentIssue false

Effect of gravitational deposition on biofilm formation and development

Published online by Cambridge University Press:  10 November 2008

Y. Yang*
Affiliation:
Department of Environmental Engineering & Earth Sciences, Clemson University, Anderson, SC 29625, USA
*
*Corresponding author: Dr Y. Yang, Environmental Engineering & Earth SciencesClemson University, 342 Computer Court, Anderson, SC 29625, USAT1 864 656 1448, F1 864 656 0672, Eyyanru@clemson.edu

Abstract

Although gravitational deposition is generally regarded to be important during biofilm development because it provides a mechanism by which bacteria can come into contact with a surface, this process is usually neglected in most biofilm studies. The purpose of this study was to develop a better understanding of the effect of gravitational deposition by comparing the development of biofilms on the upper and lower surfaces of a capillary glass tube biofilm reactor under various hydrodynamic conditions. Pure cultures of Pseudomonas fluorescens and Shewanella oneidensis MR-1 were used for the test. Results demonstrated that gravitational deposition significantly influences biofilm development under slow laminar flow conditions, which may be attributable to the effect of gravity on both attachment and detachment during the initial reversible attachment phase and the later development phase. Additionally, it was shown that hydrodynamic conditions have the potential to reduce the impact of gravitational deposition on biofilm development, and that this became less significant with an increase in flow rate. These results will be useful for comparing biofilm development in different biofilm systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W. & Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of Protein Database search programs. Nucleic Acids Research 25, 33893402CrossRefGoogle ScholarPubMed
Bakke, R., Kommedal, R. & Kalvenes, S. (2001) Quantification of biofilm accumulation by an optical approach. Journal of Microbiological Methods 44, 1326CrossRefGoogle ScholarPubMed
Branda, S. S., Vik, A., Friedman, L. & Kolter, R. (2005) Biofilms: the matrix revisited. Trends in Microbiology 13, 2026CrossRefGoogle ScholarPubMed
Busscher, H. J., Weerkamp, A. H., van der mei, H. C., van Pelt, A. W. J., de Jong, H. P. & Arends, J. (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Applied and Environmental Microbiology 48, 980983CrossRefGoogle ScholarPubMed
Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J., Nielsen, A. T., et al. (1999) Molecular tools for study of biofilm physiology. Methods in Enzymology 310, 2042CrossRefGoogle ScholarPubMed
Costerton, J. W. & Stewart, P. S. (2001) Battling biofilms – the war is against bacterial colonies that cause some of the most tenacious infections known. The weapon is knowledge of the enemy's communication system. Scientific American 285, 7481CrossRefGoogle Scholar
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappinscott, H. M. (1995) Microbial biofilms. Annual Review of Microbiology 49, 711745CrossRefGoogle ScholarPubMed
Costerton, J. W., Stewart, P. S. & Greenberg, E. P. (1999) Bacterial biofilms: a common cause of persistent infections. Science 284, 13181322CrossRefGoogle ScholarPubMed
De Vriendt, K., Theunissen, S., Carpentier, W., De Smet, L., Devreese, B. & Van Beeumen, J. (2005) Proteomics of Shewanella oneidensis MR-1 biofilm reveals differentially expressed proteins, including AggA and RibB. Proteomics 5, 13081316CrossRefGoogle ScholarPubMed
Dunsmore, B. C., Jacobsen, A., Hall-Stoodley, L., Bass, C. J., Lappin-Scott, H. M. & Stoodley, P. (2002) The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. Journal of Industrial Microbiology and Biotechnology 29, 347353CrossRefGoogle ScholarPubMed
Elvers, K. T. & Lappin-Scott, H. M. (2000) Biofilms and Biofouling, 2nd edn. San Diego, CA: Academic PressGoogle Scholar
Felip, M., Andreatta, S., Sommaruga, R., Straskrabova, V. & Catalan, J. (2007) Suitability of flow cytometry for estimating bacterial biovolume in natural plankton samples: comparison with microscopy data. Applied and Environmental Microbiology 73, 45084514CrossRefGoogle ScholarPubMed
Geesey, G. G., Lewandowski, Z. & Flemming, H. C. (1994) Biofouling and Biocorrosion in Industrial Water Systems. Boca Raton, FL: CRC PressGoogle Scholar
Giron, J. A., Torres, A. G., Freer, E. & Kaper, J. B. (2002) The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Molecular Microbiology 44, 361379CrossRefGoogle ScholarPubMed
Hausner, M. & Wuertz, S. (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Applied and Environmental Microbiology 65, 37103713CrossRefGoogle ScholarPubMed
Hunt, S. M., Werner, E. M., Huang, B. C., Hamilton, M. A. & Stewart, P. S. (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Applied and Environmental Microbiology 70, 74187425CrossRefGoogle ScholarPubMed
Kolenbrander, P. E., Andersen, R. N., Kazmerzak, K. M., Wu, R. & Palmer, R. J. Jr (1999) Spatial organization of oral bacteria in biofilm. Methods in Enzymology 310, 322332CrossRefGoogle Scholar
Lemon, K. P., Higgins, D. E. & Kolter, R. (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. Journal of Bacteriology 189, 44184424CrossRefGoogle ScholarPubMed
Lynch, S. V., Mukundakrishnan, K., Benoit, M. R., Ayyaswamy, P. S. & Matin, A. (2006) Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Applied and Environmental Microbiology 72, 77017710CrossRefGoogle Scholar
Mampel, J., Spirig, T., Weber, S. S., Haagensen, J. A. J., Molin, S. & Hilbi, H. (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Applied and Environmental Microbiology 72, 28852895CrossRefGoogle Scholar
Matin, A. & Lynch, S. V. (2005) Investigating the threat of bacteria grown in space. ASM News 71, 235240Google Scholar
Møller, S., Kristensen, C. S., Poulsen, L. K., Carstensen, J. M. & Molin, S. (1995) Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters. Applied and Environmental Microbiology 61, 741748CrossRefGoogle ScholarPubMed
Myers, C. R. & Nealson, K. H. (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240, 13191321CrossRefGoogle ScholarPubMed
Nealson, K. H. & Saffarini, D. (1994) Iron and manganese in anaerobic respiration – environmental significance, physiology, and regulation. Annual Review of Microbiology 48, 311343CrossRefGoogle ScholarPubMed
Ohl, A. L., Horn, H. & Hempel, D. C. (2004) Behaviour of biofilm systems under varying hydrodynamic conditions. Water Science & Technology 49, 345351Google Scholar
O'Toole, G. A. & Kolter, R. (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology 30, 295304CrossRefGoogle ScholarPubMed
O'Toole, G., Kaplan, H. B. & Kolter, R. (2000) Biofilm formation as microbial development. Annual Review of Microbiology 54, 4979CrossRefGoogle ScholarPubMed
Parsek, M. R. & Greenberg, E. P. (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proceedings of the National Academy of Sciences, USA 97, 87898793CrossRefGoogle ScholarPubMed
Phipps, D., Rodriguez, G. & Ridgway, H. (1999) Deconvolution fluorescence microscopy for observation and analysis of membrane biofilm architecture. Methods in Enzymology 310, 178194CrossRefGoogle ScholarPubMed
Pratt, L. A. & Kolter, R. (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology 30, 285293CrossRefGoogle ScholarPubMed
Reisner, A., Haagensen, J. A. J., Schembri, M. A., Zechner, E. L. & Molin, S. (2003) Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology 48, 933946CrossRefGoogle ScholarPubMed
Reynolds, O. (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal Society 174, 935982Google Scholar
Rice, A. R., Hamilton, M. A. & Camper, A. K. (2000) Apparent surface associated lag time in growth of primary biofilm cells. Microbial Ecology 40, 815CrossRefGoogle ScholarPubMed
Rice, S. A., Koh, K. S., Queck, S. Y., Labbate, M., Lam, K.W. & Kjelleberg, S. (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. Journal of Bacteriology 187, 34773485CrossRefGoogle ScholarPubMed
Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology 184, 11401154CrossRefGoogle ScholarPubMed
Shapiro, J. A. (1998) Thinking about bacterial populations as multicellular organisms. Annual Review of Microbiology 52, 81104CrossRefGoogle ScholarPubMed
Simoes, M., Pereira, M. O., Sillankorva, S., Azeredo, J. & Vieira, M. J. (2007) The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling 23, 249258CrossRefGoogle ScholarPubMed
Stewart, P. S. (2002) Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medicine and Microbiology 292, 107113CrossRefGoogle ScholarPubMed
Thormann, K. M., Saville, R. M., Shukla, S., Pelletier, D. A. & Spormann, A. M. (2004) Initial phases of biofilm formation in Shewanella oneidensis MR-1. Journal of Bacteriology 186, 80968104CrossRefGoogle ScholarPubMed
van Loosdrecht, M. C. M., Lyklema, J., Norde, W. & Zehnder, A. J. B. (1989) Bacterial adhesion: a physicochemical approach. Microbial Ecology 17, 115CrossRefGoogle ScholarPubMed
van Loosdrecht, M. C. M., Lyklema, J., Norde, W. & Zehnder, A. J. B. (1990) Influence of interfaces on microbial activity. Microbiological Reviews 54, 7587CrossRefGoogle ScholarPubMed
Vatanyoopaisarn, S., Nazli, A., Dodd, C. E. R., Rees, C. E. D. & Waites, W. M. (2000) Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Applied and Environmental Microbiology 66, 860863CrossRefGoogle ScholarPubMed
Venkateswaran, K., Moser, D. P., Dollhopf, M. E., Lies, D. P., Saffarini, D. A., MacGregor, B. J., et al. (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International Journal of Systematic Bacteriology 49, 705724Google ScholarPubMed
Venugopalan, V. P., Kuehn, A., Hausner, M., Springael, D., Wilderer, P. A. & Wuertz, S. (2005) Architecture of a nascent Sphingomonas sp. biofilm under varied hydrodynamic conditions. Applied and Environmental Microbiology 71, 26772686CrossRefGoogle ScholarPubMed
Wasche, S., Horn, H. & Hempel, D. C. (2002) Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Research 36, 47754784CrossRefGoogle ScholarPubMed
Watnick, P. I. & Kolter, R. (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular Microbiology 34, 586595CrossRefGoogle ScholarPubMed
Watnick, P. I., Lauriano, C. M., Klose, K. E., Croal, L. & Kolter, R. (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Molecular Microbiology 39, 223235CrossRefGoogle ScholarPubMed
Werner, E., Roe, F., Bugnicourt, A., Franklin, M. J., Heydorn, A., Molin, S., et al. (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 70, 61886196.CrossRefGoogle ScholarPubMed