Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-06T01:00:14.528Z Has data issue: false hasContentIssue false

Curcumin effects on age-related changes in oral immunity: an in vivo study

Published online by Cambridge University Press:  18 April 2024

Ippei Uemura
Affiliation:
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
Natsuko Takahashi-Suzuki
Affiliation:
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
Akari Sano
Affiliation:
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
Shogo Yamada
Affiliation:
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
Akifumi Nakata
Affiliation:
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
Takashi Satoh*
Affiliation:
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
*
*Corresponding author: Takashi Satoh, email tsatoh@hus.ac.jp

Abstract

The current study aimed to investigate the effects of ageing on oral immunity using β-defensin (DEFB) 1/2 as a marker and evaluate the effects of curcumin (CUR) on these processes. The study sample included thirty male C57BL/6J mice divided into three groups based on the treatment method used. The young control (YC) and old control (OC) groups received 0·5 % methylcellulose-400 (CUR vehicle) orally for 5 days, whereas the CUR group of older mice received a CUR solution suspended in 0·5 % methylcellulose-400 (dose: 3·0 mg/kg body). DEFB1/2 and immune indicator levels were measured in the saliva and salivary glands post-treatment. The saliva volume and protein content were significantly reduced in the OC group compared with the YC group. CUR administration restored these parameters, decreased DEFB1 expression in the salivary gland and increased DEFB1/2 secretion and DEFB2 expression. These findings were supported by epigenetic gene regulation and partial cytokine activation from changes in WD40 repeat protein 5, TNF alpha and IL-1beta. CUR can partially restore age-related changes in oral immune responses and promote oral health, thereby preventing frailty in the older population through a nutritional therapeutic pathway.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work

References

Fukutomi, E, Kimura, Y, Wada, T, et al. (2013) Long-term care prevention project in Japan. Lancet 381, 116.CrossRefGoogle ScholarPubMed
Chen, LK, Liu, LK, Woo, J, et al. (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15, 95101.CrossRefGoogle ScholarPubMed
Watanabe, D, Kurotani, K, Yoshida, T, et al. (2022) Adherence to the food-based Japanese dietary guidelines and prevalence of poor oral health-related quality of life among older Japanese adults in the Kyoto-Kameoka study. Br J Nutr 128, 467476.CrossRefGoogle Scholar
Iwasaki, M, Motokawa, K, Watanabe, Y, et al. (2020) Association between oral frailty and nutritional status among community-dwelling older adults: the Takashimadaira study. J Nutr Health Aging 24, 10031010.CrossRefGoogle ScholarPubMed
Lin, D, Yang, L, Wen, L, et al. (2021) Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol 14, 12471258.CrossRefGoogle ScholarPubMed
Kotronia, E, Brown, H, Papacosta, AO et al. (2021) Poor oral health and the association with diet quality and intake in older people in two studies in the UK and USA. Br J Nutr 126, 118130.CrossRefGoogle ScholarPubMed
Ebersole, JL, Kirakodu, S, Novak, MJ, et al. (2016) Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. Mol Oral Microbiol 31, 1832.CrossRefGoogle ScholarPubMed
Ebersole, JL & Gonzalez, OA (2022) Mucosal circadian rhythm pathway genes altered by aging and periodontitis. PLOS ONE 17, e0275199.CrossRefGoogle ScholarPubMed
Shinkai, S, Toba, M, Saito, T, et al. (2016) Immunoprotective effects of oral intake of heat-killed Lactobacillus pentosus strain b240 in elderly adults: a randomised, double-blind, placebo-controlled trial - corrigendum. Br J Nutr 116, 11381140.CrossRefGoogle Scholar
Krisanaprakornkit, S, Kimball, JR, Weinberg, A, et al. (2000) Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun 68, 29072915.CrossRefGoogle ScholarPubMed
Tobin, I & Zhang, G (2023) Regulation of host defense peptide synthesis by polyphenols. Antibiot (Basel) 12, 660.CrossRefGoogle ScholarPubMed
Polesello, V, Zupin, L, Di Lenarda, R, et al. (2017) DEFB1 polymorphisms and salivary hBD-1 concentration in oral Lichen Planus patients and healthy subjects. Arch Oral Biol 73, 161165.CrossRefGoogle ScholarPubMed
Hancock, RE, Haney, EF & Gill, EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16, 321334.CrossRefGoogle ScholarPubMed
Akira, S, Uematsu, S & Takeuchi, O (2006) Pathogen recognition and innate immunity. Cell 124, 783801.CrossRefGoogle ScholarPubMed
Oladejo, AO, Li, Y, Wu, X, et al. (2020) MicroRNAome: potential and veritable immunomolecular therapeutic and diagnostic baseline for lingering bovine endometritis. Front Vet Sci 7, 614054.CrossRefGoogle ScholarPubMed
Palazzo, M, Balsari, A, Rossini, A, et al. (2007) Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J Immunol 178, 42964303.CrossRefGoogle ScholarPubMed
Yue, W, Liu, Y, Li, X, et al. (2019) Curcumin ameliorates dextran sulfate sodium-induced colitis in mice via regulation of autophagy and intestinal immunity. Turk J Gastroenterol 30, 290298.CrossRefGoogle ScholarPubMed
Epstein, J, Sanderson, IR & MacDonald, TT (2010) Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr 103, 15451557.CrossRefGoogle ScholarPubMed
Guo, C, Rosoha, E, Lowry, MB, et al. (2013) Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway. J Nutr Biochem 24, 754759.CrossRefGoogle ScholarPubMed
Ming, J, Ye, J, Zhang, Y, et al. (2020) Optimal dietary curcumin improved growth performance, and modulated innate immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. Fish Shellfish Immunol 97, 540553.CrossRefGoogle ScholarPubMed
Akone, SH, Ntie-Kang, F, Stuhldreier, F, et al. (2020) Natural products impacting DNA methyltransferases and histone deacetylases. Front Pharmacol 11, 992.CrossRefGoogle ScholarPubMed
Moghadamtousi, SZ, Kadir, HA, Hassandarvish, P, et al. (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 2014, 186864.Google ScholarPubMed
Karaman Mayack, B, Sippl, W & Ntie-Kang, F (2020) Natural products as modulators of sirtuins. Mol 25, 3287.CrossRefGoogle ScholarPubMed
Panche, AN, Diwan, AD & Chandra, SR (2016) Flavonoids: an overview. J Nutr Sci 5, e47.CrossRefGoogle ScholarPubMed
Cheng, AL, Hsu, CH, Lin, JK, et al. (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21, 28952900.Google ScholarPubMed
Marczylo, TH, Steward, WP & Gescher, AJ (2009) Rapid analysis of curcumin and curcumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J Agric Food Chem 57, 797803.CrossRefGoogle ScholarPubMed
Boozari, M, Butler, AE & Sahebkar, A (2019) Impact of curcumin on toll-like receptors. J Cell Physiol 234, 1247112482.CrossRefGoogle ScholarPubMed
De Quadros De Bortolli, JDQ, Klein, M, Teixeira, D, et al. (2020) Topical application of chamomile and curcumin in oral ulcers: an experimental study in rats. Oral Surg Oral Med Oral Pathol Oral Rad 129, e148.CrossRefGoogle Scholar
Flurkey, K, Currer, JM & Harrison, DE (2007) The mouse in aging research. In The Mouse in Biomedical, Research, 2nd ed., pp. 637672. [Fox, JG, Davisson, MT, Quimby, FW, Barthold, SW, Newcomer, CE, Smith, AL, editors]. Burlington: American College Laboratory Animal Medicine (Elsevier).CrossRefGoogle Scholar
Nair, AB & Jacob, S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 2731.CrossRefGoogle ScholarPubMed
Nakagawa, Y, To, M, Saruta, J, et al. (2019) Effect of social isolation stress on saliva BDNF in rat. J Oral Sci 61, 516520.CrossRefGoogle ScholarPubMed
Taylor, SC & Posch, A (2014) The design of a quantitative western blot experiment. BioMed Res Int 2014, 361590.CrossRefGoogle ScholarPubMed
Shin, HS, See, HJ, Jung, SY, et al. (2015) Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy. J Ethnopharmacol 175, 2129.CrossRefGoogle Scholar
Chattopadhyay, I, Biswas, K, Bandyopadhyay, U, et al. (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87, 4453.Google Scholar
Tayyem, RF, Heath, DD, Al-Delaimy, WK, et al. (2006) Curcumin content of turmeric and curry powders. Nutr Cancer 55, 126131.CrossRefGoogle ScholarPubMed
Xu, F, Laguna, L & Sarkar, A (2019) Aging-related changes in quantity and quality of saliva: where do we stand in our understanding? J Texture Stud 50, 2735.CrossRefGoogle ScholarPubMed
Feron, G (2019) Unstimulated saliva: background noise in taste molecules. J Texture Stud 50, 618.CrossRefGoogle ScholarPubMed
Martin, LE, Gutierrez, VA & Torregrossa, AM (2023) The role of saliva in taste and food intake. Physiol Behav 262, 114109.CrossRefGoogle ScholarPubMed
Sato, K, Kato, A, Sekai, M, et al. (2017) Physiologic thymic involution underlies age-dependent accumulation of senescence-associated CD4+ T cells. J Immunol 199, 138148.CrossRefGoogle ScholarPubMed
Karlsson, M, Zhang, C, Méar, L, et al. (2021) A single-cell type transcriptomics map of human tissues. Sci Adv 7, eabh2169.CrossRefGoogle Scholar
Nagler, RM & Hershkovich, O (2005) Age-related changes in unstimulated salivary function and composition and its relations to medications and oral sensorial complaints. Aging Clin Exp Res 17, 358366.CrossRefGoogle ScholarPubMed
Abou Alaiwa, MH, Reznikov, LR, Gansemer, ND, et al. (2014) pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37. Proc Natl Acad Sci USA 111, 1870318708.CrossRefGoogle Scholar
Scott, J (1977) Quantitative age changes in the histological structure of human submandibular salivary glands. Arch Oral Biol 22, 221227.CrossRefGoogle ScholarPubMed
Kiyama, J (2000) Characteristics of secretory immunoglobulin A secretion from rat salivary glands. Jpn J Oral Biol 42, 302314.CrossRefGoogle Scholar
Scott, J, Flower, EA & Burns, J (1987) A quantitative study of histological changes in the human parotid gland occurring with adult age. J Oral Pathol 16, 505510.CrossRefGoogle ScholarPubMed
Ogle, OE (2020) Salivary gland diseases. Dent Clin North Am 64, 87104.CrossRefGoogle ScholarPubMed
Tsutsumi-Ishii, Y & Nagaoka, I (2002) NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J Leukoc Biol 71, 154162.CrossRefGoogle ScholarPubMed
Rosignoli da Conceição, A, Dias, KA, Michelin Santana Pereira, S, et al. (2022) Protective effects of whey protein concentrate admixtured of curcumin on metabolic control, inflammation and oxidative stress in Wistar rats submitted to exhaustive exercise. Br J Nutr 127, 526539.CrossRefGoogle ScholarPubMed
Harada, N, Arahori, Y, Okuyama, M, et al. (2022) Curcumin activates G protein-coupled receptor 97 (GPR97) in a manner different from glucocorticoid. Biochem Biophys Res Commun 595, 4146.CrossRefGoogle Scholar
Harada, N, Okuyama, M, Teraoka, Y, et al. (2022) Identification of G protein-coupled receptor 55 (GPR55) as a target of curcumin. npj Sci Food 6, 4.CrossRefGoogle ScholarPubMed
Kishimoto, S, Uno, M, Okabe, E, et al. (2017) Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat Commun 8, 14031.CrossRefGoogle ScholarPubMed
Fitzpatrick, SG, Alramadhan, S, Islam, MN, et al. (2023) Increased frequency of oral plasma cell mucositis/plasma cell gingivitis following the COVID-19 pandemic: a 23-year retrospective analysis and review of diagnostic challenges relating to this condition. Oral Surg Oral Med Oral Pathol Oral Rad 137, 153160.CrossRefGoogle Scholar
Morley, JE (2020) Editorial: oral frailty. J Nutr Health Aging 24, 683684.CrossRefGoogle ScholarPubMed
Diaz-Toro, F, Petermann-Rocha, F, Parra-Soto, S, et al. (2022) Association between poor Oral Health and frailty in middle-aged and older individuals: a cross-sectional national study. J Nutr Health Aging 26, 987993.CrossRefGoogle ScholarPubMed
Pourhajibagher, M, Noroozian, M, Ahmad Akhoundi, MS, et al. (2022) Antimicrobial effects and mechanical properties of poly(methyl methacrylate) as an orthodontic acrylic resin containing Curcumin-Nisin-poly(L-lactic acid) nanoparticle: an in vitro study. BMC Oral Health 22, 158.CrossRefGoogle ScholarPubMed
Weinberg, A, Krisanaprakornkit, S & Dale, BA (1998) Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9, 399414.CrossRefGoogle ScholarPubMed
Uemura, I, Takahashi-Suzuki, N, Kita, F, et al. (2024) Regulation of chloride channels by epidermal growth factor receptor-tyrosine kinase inhibitor-induced α-defensin 5. Biol Pharm Bull 47, 159165.CrossRefGoogle ScholarPubMed
Takahashi, N, Kobayashi, M, Ogura, J, et al. (2014) Immunoprotective effect of epigallocatechin-3-gallate on oral anticancer drug-induced α-defensin reduction in Caco-2 cells. Biol Pharm Bull 37, 490492.CrossRefGoogle ScholarPubMed
Yasuda, G, Kubota, A, Okamoto, K, et al. (2023) Association between α-defensin 5 and the expression and function of P-glycoprotein in differentiated intestinal Caco-2 cells. Biopharm Drug Dispos 44, 358364.CrossRefGoogle ScholarPubMed
Supplementary material: File

Uemura et al. supplementary material

Uemura et al. supplementary material
Download Uemura et al. supplementary material(File)
File 778.8 KB