Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T22:22:28.177Z Has data issue: false hasContentIssue false

Biology of Euwallacea interjectus, an emerging poplar pest, reared on an ambrosia beetle artificial diet and medium of fungal symbiont

Published online by Cambridge University Press:  08 May 2024

Langlang Zheng
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China College of Forestry, Nanjing Forestry University, Nanjing 210036, China
Shengchang Lai
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China College of Forestry, Nanjing Forestry University, Nanjing 210036, China
Yang Zhou
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China College of Forestry, Nanjing Forestry University, Nanjing 210036, China
Nan Jiang
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China College of Forestry, Nanjing Forestry University, Nanjing 210036, China
Dejun Hao
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China College of Forestry, Nanjing Forestry University, Nanjing 210036, China
Lulu Dai*
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China College of Forestry, Nanjing Forestry University, Nanjing 210036, China
*
Corresponding author: Lulu Dai; Email: dailulu@njfu.edu.cn

Abstract

Euwallacea interjectus, a recently discovered pest in poplar plantations, poses a significant economic threat due to its role in causing widespread tree mortality. This pest's cryptic behaviour has hindered research and control efforts, making laboratory rearing a valuable tool for studying its development and biology. We investigated the development period and biological characteristics of E. interjectus using artificial diets and fungal medium. Our findings revealed that the development time for eggs, larvae, and pupae averages approximately 6, 18, and 6 days, respectively. Notably, first and second instar larvae displayed peak moulting periods at 3.45 ± 0.64 SD and 7.92 ± 1.77 SD days, respectively. Furthermore, we measured head capsule widths of postmolt larvae, yielding values of 318.02 ± 7.38 SD μm for first-instar larvae, 403.01 ± 11.08 SD μm for second-instar larvae, and 549.54 ± 20.74 SD μm for third-instar larvae. Our research also uncovered a positive correlation between the number of progeny (eggs, larvae, pupae, and adults) and the mean length of the gallery system. Interestingly, the haplodiploid reproductive strategy did not significantly affect the number of offspring produced by the foundress. Additionally, we observed that foundresses displayed higher fecundity when subjected to nutrient-rich diets as compared to nutrient-poor diets. Our results will deepen our understanding of the biology of E. interjectus and provide criteria for larval instar classification. Additionally, managing nutrient availability within the colony could be considered a viable approach to regulating population size.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, T, Smith, JA, Kasson, MT, Freeman, S, Geiser, DM, Geering, ADW and O'Donnell, K (2019) Three novel Ambrosia Fusarium Clade species producing clavate macroconidia known (F. floridanum and F. obliquiseptatum) or predicted (F. tuaranense) to be farmed by Euwallacea spp. (Coleoptera: Scolytinae) on woody hosts. Mycologia 111, 919935.CrossRefGoogle ScholarPubMed
Batra, LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science 66, 213236.CrossRefGoogle Scholar
Biedermann, PH (2010) Observations on sex ratio and behavior of males in Xyleborinus saxesenii Ratzeburg (Scolytinae, Coleoptera). ZooKeys 56, 253267.CrossRefGoogle Scholar
Biedermann, PHW and Taborsky, M (2011) Larval helpers and age polyethism in ambrosia beetles. Proceedings of the National Academy of Sciences of the United States of America 108, 1706417069.CrossRefGoogle ScholarPubMed
Biedermann, PHW, Klepzig, KD and Taborsky, M (2009) Fungus cultivation by ambrosia beetles: behavior and laboratory breeding success in three xyleborine species. Environmental Entomology 38, 10961105.CrossRefGoogle ScholarPubMed
Biedermann, PH, Klepzig, KD, Taborsky, M and Six, DL (2013) Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiology Ecology 83, 711723.CrossRefGoogle ScholarPubMed
Cooperband, MF, Stouthamer, R, Carrillo, D, Eskalen, A, Thibault, T, Cossé, AA, Castrillo, LA, Vandenberg, JD and Rugman-Jones, PF (2016) Biology of two members of the Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae), recently invasive in the USA, reared on an ambrosia beetle artificial diet. Agricultural and Forest Entomology 18, 223237.CrossRefGoogle Scholar
Cruz, L, Rocio, S, Duran, L, Menocal, O, Garcia-Avila, C and Carrillo, D (2018) Developmental biology of Xyleborus bispinatus (Coleoptera: Curculionidae) reared on an artificial medium and fungal cultivation of symbiotic fungi in the beetle's galleries. Fungal Ecology 35, 116126.CrossRefGoogle Scholar
Freeman, S, Protasov, A, Sharon, M, Mohotti, K, Eliyahu, M, Okon-Levy, N, Maymon, M and Mendel, Z (2012) Obligate feed requirement of Fusarium sp. nov., an avocado wilting agent, by the ambrosia beetle Euwallacea aff. fornicata. Symbiosis 58, 245251.CrossRefGoogle Scholar
Hulcr, J and Cognato, AI (2010) Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution 64, 32053212.CrossRefGoogle ScholarPubMed
Hulcr, J and Stelinski, LL (2017) The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology 62, 285303.CrossRefGoogle ScholarPubMed
Hulcr, J and Skelton, J (2023) Ambrosia beetles. In Allison, JD (ed.), Forest Entomology and Pathology: Volume 1: Entomology. Berlin, Germany: Springer International Publishing Cham, pp. 339360.CrossRefGoogle Scholar
Jiang, Z-R, Masuya, H and Kajimura, H (2021) Novel symbiotic association between Euwallacea ambrosia beetle and Fusarium fungus on fig trees in Japan. Frontiers in Microbiology 12, 725210.CrossRefGoogle ScholarPubMed
Jiang, Z-R, Morita, T, Jikumaru, S, Kuroda, K, Masuya, H and Kajimura, H (2022) The role of mycangial fungi associated with ambrosia beetles (Euwallacea interjectus) in fig wilt disease: dual inoculation of Fusarium kuroshium and Ceratocystis ficicola can bring fig saplings to early symptom development. Microorganisms 10, 1912.CrossRefGoogle ScholarPubMed
Kajii, C, Morita, T, Jikumaru, S, Kajimura, H, Yamaoka, Y and Kuroda, K (2013) Xylem dysfunction in Ficus carica infected with wilt fungus Ceratocystis ficicola and the role of the vector beetle Euwallacea interjectus. IAWA Journal 34, 301312.CrossRefGoogle Scholar
Knížek, M and Beaver, R (2007) Taxonomy and systematics of bark and ambrosia beetles. In Lieutier, F (ed.), Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Berlin, Germany: Springer Nature, pp. 4154.Google Scholar
Lai, S, Zhao, C, Li, Y, Zhou, Y, Zhong, L, Qiu, C, Wang, H, Pan, Y, Dai, L and Hao, D (2022) Three novel Fusarium mutualists of ambrosia beetle Euwallacea interjectus in China. Mycological Progress 21, 70.CrossRefGoogle Scholar
Landi, L, Braccini, CL, Knížek, M, Pereyra, VA and Marvaldi, AE (2019) A newly detected exotic ambrosia beetle in Argentina: Euwallacea interjectus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 102, 240242.Google Scholar
Maner, ML, Hanula, JL and Braman, SK (2013) Rearing redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), on semi-artificial media. Florida Entomologist 96, 10421051.CrossRefGoogle Scholar
Menocal, O, Cruz, LF, Kendra, PE, Crane, JH, Ploetz, RC and Carrillo, D (2017) Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environmental Entomology 46, 12751283.CrossRefGoogle ScholarPubMed
Mizuno, T and Kajimura, H (2002) Reproduction of the ambrosia beetle, Xyleborus pfeili (Ratzeburg)(Col., Scolytidae), on semi-artificial diet. Journal of Applied Entomology 126, 455462.CrossRefGoogle Scholar
Mizuno, T and Kajimura, H (2009) Effects of ingredients and structure of semi-artificial diet on the reproduction of an ambrosia beetle, Xyleborus pfeili (Ratzeburg)(Coleoptera: Curculionidae: Scolytinae). Applied Entomology and Zoology 44, 363370.CrossRefGoogle Scholar
Morita, T, Hara, H, Mise, D and Jikumaru, S (2012) A case study of Ceratocystis canker epidemic in relation with Euwallacea interjectus infestation. Annual Report of the Kansai Plant Protection Society 54, 2934.CrossRefGoogle Scholar
Nuotclà, JA, Diehl, JMC and Taborsky, M (2021) Habitat quality determines dispersal decisions and fitness in a beetle–fungus mutualism. Frontiers in Ecology and Evolution 9, 602672.CrossRefGoogle Scholar
Peer, K and Taborsky, M (2005) Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution 59, 317323.Google ScholarPubMed
Peer, K and Taborsky, M (2007) Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behavioral Ecology and Sociobiology 61, 729739.CrossRefGoogle Scholar
Saunders, JL and Knoke, JK (1967) Diets for rearing the ambrosia beetle Xyleborus ferrugineus (Fabricius) in vitro. Science (New York, N.Y.) 157, 460463.CrossRefGoogle ScholarPubMed
Skelton, J, Johnson, AJ, Jusino, MA, Bateman, CC, Li, Y and Hulcr, J (2019) A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proceedings of the Royal Society B 286, 20182127.CrossRefGoogle ScholarPubMed
Wang, Z, Li, Y, Ernstsons, AS, Sun, R, Hulcr, J and Gao, L (2021) The infestation and habitat of the ambrosia beetle Euwallacea interjectus (Coleoptera: Curculionidae: Scolytinae) in the riparian zone of Shanghai, China. Agricultural and Forest Entomology 23, 104109.CrossRefGoogle Scholar
Weber, B and McPherson, J (1983) Life history of the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae). Annals of the Entomological Society of America 76, 455462.CrossRefGoogle Scholar
Supplementary material: File

Zheng et al. supplementary material 1

Zheng et al. supplementary material
Download Zheng et al. supplementary material 1(File)
File 17 KB
Supplementary material: File

Zheng et al. supplementary material 2

Zheng et al. supplementary material
Download Zheng et al. supplementary material 2(File)
File 12.2 MB
Supplementary material: File

Zheng et al. supplementary material 3

Zheng et al. supplementary material
Download Zheng et al. supplementary material 3(File)
File 22.3 MB