Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-19T15:59:40.828Z Has data issue: false hasContentIssue false

ON THE CUMULATIVE DISTRIBUTION FUNCTION OF THE VARIANCE-GAMMA DISTRIBUTION

Published online by Cambridge University Press:  29 January 2024

ROBERT E. GAUNT*
Affiliation:
Department of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract

We obtain exact formulas for the cumulative distribution function of the variance-gamma distribution, as infinite series involving the modified Bessel function of the second kind and the modified Lommel function of the first kind. From these formulas, we deduce exact formulas for the cumulative distribution function of the product of two correlated zero-mean normal random variables.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azmoodeh, E., Eichelsbacher, P. and Thäle, C., ‘Optimal variance-gamma approximation on the second Wiener chaos’, J. Funct. Anal. 282 (2022), Article no. 109450.CrossRefGoogle Scholar
Craig, C. C., ‘On the frequency function of $xy$ ’, Ann. Math. Stat. 7 (1936), 115.CrossRefGoogle Scholar
Fischer, A., Gaunt, R. E. and Sarantsev, A., ‘The variance-gamma distribution: A review’, Preprint, 2023, arXiv:2303.05615.Google Scholar
Gaunt, R. E., R. Rates of Convergence of Variance-Gamma Approximations via Stein’s Method. DPhil thesis, University of Oxford, 2013.CrossRefGoogle Scholar
Gaunt, R. E., ‘Variance-gamma approximation via Stein’s method’, Electron. J. Probab. 19(38) (2014), 133.CrossRefGoogle Scholar
Gaunt, R. E., ‘A note on the distribution of the product of zero mean correlated normal random variables’, Stat. Neerl. 73 (2019), 176179.CrossRefGoogle Scholar
Gaunt, R. E., ‘Bounds for modified Lommel functions of the first kind and their ratios’, J. Math. Anal. Appl. 486 (2020), Article no. 123893.CrossRefGoogle Scholar
Gaunt, R. E., ‘The basic distributional theory for the product of zero mean correlated normal random variables’, Stat. Neerl. 76 (2022), 450470.CrossRefGoogle Scholar
Holm, H. and Alouini, M.-S., ‘Sum and difference of two squared correlated Nakagami variates with the McKay distribution’, IEEE Trans. Comput. 52 (2004), 13671376.Google Scholar
Jankov Maširević, D. and Pogány, T. K., ‘On new formulae for cumulative distribution function for McKay Bessel distribution’, Commun. Stat. Theory 50 (2021), 143160.CrossRefGoogle Scholar
Kotz, S., Kozubowski, T. J. and Podgórski, K., The Laplace Distribution and Generalizations: A Revisit with New Applications (Springer, Berlin, 2001).CrossRefGoogle Scholar
Madan, D. B., Carr, P. and Chang, E. C., ‘The variance gamma process and option pricing’, Eur. Finance Rev. 2 (1998), 74105.CrossRefGoogle Scholar
Madan, D. B. and Seneta, E., ‘The variance gamma (V.G.) model for share market returns’, J. Bus. 63 (1990), 511524.CrossRefGoogle Scholar
McKay, A. T., ‘A Bessel function distribution’, Biometrika 24 (1932), 3944.CrossRefGoogle Scholar
Nadarajah, S. and Pogány, T. K., ‘On the distribution of the product of correlated normal random variables’, C. R. Acad. Sci. Paris, Ser. I 354 (2016), 201204.CrossRefGoogle Scholar
Nadarajah, S., Srivastava, H. M. and Gupta, A. K., ‘Skewed Bessel function distributions with application to rainfall data’, Statistics 41 (2007), 333344.CrossRefGoogle Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010).Google Scholar
Pearson, K., Jefferey, G. B. and Elderton, E. M., ‘On the distribution of the first product moment-coefficient, in samples drawn from an indefinitely large normal population’, Biometrika 21(1929), 164193.CrossRefGoogle Scholar
Rollinger, C. N., ‘Lommel functions with imaginary argument’, Q. Appl. Math. 21 (1964), 343349.CrossRefGoogle Scholar