Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-31T22:55:49.263Z Has data issue: false hasContentIssue false

Echocardiographic evaluation of the failing heart*

Published online by Cambridge University Press:  17 September 2015

Anitha Parthiban*
Affiliation:
Ward Family Heart Center, Children’s Mercy Hospital, Kansas City, Missouri, United States of America
Girish Shirali
Affiliation:
Ward Family Heart Center, Children’s Mercy Hospital, Kansas City, Missouri, United States of America
*
Correspondence to: A. Parthiban, MD, Children’s Mercy Hospital, 2401 Gillham Road, Kansas City, MO 64108, United States of America. Tel: +816 234 3947; Fax: +816 302 9987; E-mail: aparthiban@cmh.edu

Abstract

Heart failure in children can result from a wide range of aetiologies and can manifest in systolic and/or diastolic dysfunction. Echocardiography is the primary test for the diagnosis and follow-up of children with heart failure. In this article, we critically review standard echocardiographic measurements that have been shown to have prognostic importance in children with various types of heart failure. Each of the common forms of cardiomyopathy that is encountered in childhood – dilated, hypertrophic, restrictive, left ventricular non-compaction, and arrhythmogenic right ventricular cardiomyopathy – is discussed separately. Special attention is paid to the failing right ventricle, both in the systemic and in the sub-pulmonary position, to the failing univentricular heart, and to the assessment of diastolic function in children.

Type
Original Articles
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Presented at Johns Hopkins All Children’s Heart Institute, International Pediatric Heart Failure Summit, Saint Petersburg, Florida, United States of America, 4–5 February, 2015.

References

1. Fleming, TR. Surrogate end points in cardiovascular disease trials. Am Heart J 2000; 139: S193S196.CrossRefGoogle ScholarPubMed
2. Gheorghiade, M, Adams, KF Jr, Gattis, WA, Teerlink, JR, Orlandi, C, O’Connor, CM. Surrogate end points in heart failure trials. Am Heart J 2003; 145: S67S70.Google Scholar
3. Grenier, MA, Osganian, SK, Cox, GF, et al. Design and implementation of the North American Pediatric Cardiomyopathy Registry. Am Heart J 2000; 139: S86S95.Google Scholar
4. Nugent, AW, Daubeney, PE, Chondros, P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 2003; 348: 16391646.Google Scholar
5. Towbin, JA, Lowe, AM, Colan, SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006; 296: 18671876.Google Scholar
6. Alvarez, JA, Orav, EJ, Wilkinson, JD, et al. Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. Circulation 2011; 124: 814823.Google Scholar
7. Everitt, MD, Sleeper, LA, Lu, M, et al. Recovery of echocardiographic function in children with idiopathic dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. J Am Coll Cardiol 2014; 63: 14051413.CrossRefGoogle ScholarPubMed
8. Alexander, PM, Daubeney, PE, Nugent, AW, et al. Long-term outcomes of dilated cardiomyopathy diagnosed during childhood: results from a national population-based study of childhood cardiomyopathy. Circulation 2013; 128: 20392046.Google Scholar
9. Colan, SD, Shirali, G, Margossian, R, et al. The ventricular volume variability study of the Pediatric Heart Network: study design and impact of beat averaging and variable type on the reproducibility of echocardiographic measurements in children with chronic dilated cardiomyopathy. J Am Soc Echocardiogr 2012; 25: 842854.Google Scholar
10. Molina, KM, Shrader, P, Colan, SD, et al. Predictors of disease progression in pediatric dilated cardiomyopathy. Circ Heart Fail 2013; 6: 12141222.Google Scholar
11. Margossian, R, Chen, S, Sleeper, LA, et al. The reproducibility and absolute values of echocardiographic measurements of left ventricular size and function in children are algorithm dependent. J Am Soc Echocardiogr 2015; 28: 549558.Google Scholar
12. Lee, CK, Margossian, R, Sleeper, LA, et al. Variability of M-mode versus two-dimensional echocardiography measurements in children with dilated cardiomyopathy. Pediatr Cardiol 2014; 35: 658667.Google Scholar
13. Maron, BJ, McKenna, WJ, Danielson, GK, et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 2003; 42: 16871713.CrossRefGoogle Scholar
14. Maron, BJ, Roberts, WC, Arad, M, et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 2009; 301: 12531259.CrossRefGoogle ScholarPubMed
15. McMahon, CJ, Nagueh, SF, Pignatelli, RH, et al. Characterization of left ventricular diastolic function by tissue Doppler imaging and clinical status in children with hypertrophic cardiomyopathy. Circulation 2004; 109: 17561762.Google Scholar
16. Lipshultz, SE, Orav, EJ, Wilkinson, JD, et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet 2013; 382: 18891897.Google Scholar
17. Nugent, AW, Daubeney, PE, Chondros, P, et al. Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 2005; 112: 13321338.Google Scholar
18. Webber, SA, Lipshultz, SE, Sleeper, LA, et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation 2012; 126: 12371244.Google Scholar
19. Brescia, ST, Rossano, JW, Pignatelli, R, et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation 2013; 127: 22022208.Google Scholar
20. Pignatelli, RH, McMahon, CJ, Dreyer, WJ, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 2003; 108: 26722678.Google Scholar
21. Rudski, LG, Lai, WW, Afilalo, J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23: 685713.Google Scholar
22. Lang, RM, Badano, LP, Mor-Avi, V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 139.Google Scholar
23. Margossian, R, Schwartz, ML, Prakash, A, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study). Am J Cardiol 2009; 104: 419428.Google Scholar
24. Anderson, PA, Sleeper, LA, Mahony, L, et al. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol 2008; 52: 8598.Google Scholar
25. Nagueh, SF, Appleton, CP, Gillebert, TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22: 107133.CrossRefGoogle ScholarPubMed
26. Dragulescu, A, Mertens, L, Friedberg, MK. Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging 2013; 6: 254261.Google Scholar