Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T20:30:28.871Z Has data issue: false hasContentIssue false

Clayey materials from the Sierra de la Demanda Range (Spain): their potential as raw materials for the building ceramics industry

Published online by Cambridge University Press:  09 July 2018

R. Artigas
Affiliation:
Crystallography and Mineralogy Department, Geological Sciences Faculty, Complutense University of Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
M. Rodas
Affiliation:
Crystallography and Mineralogy Department, Geological Sciences Faculty, Complutense University of Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
C. J. Sánchez*
Affiliation:
Applied Mineralogy Laboratory, Chemical Sciences Faculty, University of Castilla-La Mancha, Avd. Camilo José Cela, E-13071 Ciudad Real, Spain
R. Mas
Affiliation:
Stratigraphy Department, Geological Sciences Faculty, Complutense University of Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
M. Dondi
Affiliation:
Institute of Science and Technology for Ceramics, CNR-ISTEC, via Granarolo 64, 48018 Faenza, Italy
J. Arribas
Affiliation:
Petrology Department, Geological Sciences Faculty, Complutense University of Madrid, Ciudad Universitaria, E-28040 Madrid, Spain

Abstract

This work describes the possible use of thick Early Cretaceous clay deposits, which occur in the southern sector of the Sierra de la Demanda range, as raw materials in the manufacture of ceramic articles. The global mineralogical composition is characterized by high proportions of phyllosilicates and quartz with variable quantities of feldspars, carbonates and hematite. The clay mineralogy differentiates two types of raw materials: illitic clay and kaolinitic-illitic clay. A granulometric distribution in the 2–60 µm fraction, good behaviour during the drying stage and acceptable results in firing tests confirmed that most samples can be utilized as raw material in the building ceramics industry. The range of suitable firing temperatures for these materials is 950–1000°C, a temperature which needs to be raised for samples with a high percentage of kaolinite and quartz. Moreover, other materials with abundant calcite (20–30%) are suitable for use as modifiers of some properties or colour.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Azcárate, J., Barrenechea, J., Rodas, M. & Mas, J. R. (1995) Comparative study of the transition between very low-grade and low-grade metamorphism in siliciclastic and carbonate sediments; Early Cretaceous, Cameros Basin (northern Spain). Clay Minerals, 30, 407419.Google Scholar
Arribas, J., Alonso, A., Mas, R. & Tortosa, A. (2001) The role of the structural Hercynian units on the petrogenesis of siliciclastic deposits from the western Cameros Basin (Late Jurassic-Early Cretaceous Iberian Rift), North Spain. International Association of Sedimentologists, 21st Meeting, pp. 119-120.Google Scholar
Arribas, J., Alonso, A., Mas, R., Tortosa, A., Rodas, M., Barrenechea, J.F., Alonso-Azcárate, J. & Artigas, R. (2003) Sandstone petrography of continental depositional sequences of an intraplate rift basin: western Cameros basin (North Spain). Journal of Sedimentary Research, 73, 307325.Google Scholar
Bain, J.A. (1968) A plasticity chart as an aid to the identification and assessment of industrial clays. Clay Minerals, 9, 117.Google Scholar
Barrenechea, J., Rodas, M. & Mas, J.R. (1995) Clay mineral variations associated with diagenesis and low-grade metamorphism of Early Cretaceous sediments in the Cameros Basin, Spain. Clay Minerals, 30, 119133.Google Scholar
Casquet, C., Galindo, C., González-Casado, J.M., Alonso, A., Mas, R., Rodas, M., García, E. & Barrenechea, J.F. (1992) El metamorfismo en la cuenca de los Cameros; geocronología e implicaciones tectónicas. Geogaceta, 11, 2225.Google Scholar
Cultrone, G., Rodríguez-Navarro, C., Sebastián, E., Cazalla, O. & De la Torre, M.J. (2001) Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621–634.Google Scholar
Dondi, M., Marsigli, M. & Venturi, I. (1998a) Sensibilità allssiccamento e caratteristiche porosimetriche delle argille italiane per laterizi. Ceramurgia, XXVIII, 1-8.Google Scholar
Dondi, M., Marsigli, M. & Venturi, I. (1998b) Technological requirements of raw materials for heavy clay products. Proceedings of the 2nd Mediterranean Clay Meeting, Aveiro, Portugal, 2, pp. 204-207.Google Scholar
Dunham, A.C., McKnight, A.S. & Warren, I. (1992) The determination and application of time-temperaturetransformation diagrams for brick, tile and pipe clays. Final Report to the Mineral Industry Research Organisation of Project RC56: TTT diagrams for Brick, Tile and Pipe Clays.Google Scholar
Enrique Navarro, J.E. & Amorós Albaro, J.L. (1985) Tecnología Cerámica. Vol. I. Introductión a la Tecnología Cerámica. Materias primas cerámicas. Instituto de Química Técnica. Universidad de Valencia, Spain, 155 pp.Google Scholar
Ferrandis, V.A., González Peña, J.Ma. & Sandoval del Río, F. (1974) Estudio fisicoquimico y tecnologico de un grupo de arcillas para ladrilleria. Boletin de la Sociedad Espahola de Ceramica y Vidrio, 13, 495504.Google Scholar
González-García, F., Romero-Acosta, V., García-Ramos, G. & González-Rodríguez, M. (1990) Firing transformations of mixtures of clays containing illite, kaolinite and calcium carbonate utilised by ornamental tile industries. Applied Clay Science, 5, 361375.Google Scholar
Guimera, J., Alonso, A. & Mas, J.R. (1995) Inversion of an extensional-ramp basin by a newly formed thrust; the Cameras Basin (N. Spain). Pp. 433-453 in: Basin Inversion (Buchanan, J.G. and Buchanan, P.G., editors). Special Publication 88, Geological Society of London.Google Scholar
Kapur, S., Sakarya, N., Karaman, C., FitzPatrick, E.A. & Pagliani, M. (1995) Micromorphology of basaltic ceramics. British Ceramic Transactions, 94, 33–37.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Martín-Closas, C. & Alonso-Millán, A. (1998) Estratigrafía y bioestratigrafía (Charophyta) del Cretacico Inferior en el sector occidental de la Cameras Basin (Cordillera Ibérica). Revista de la Sociedad Geológica de España, 11, 253-269.Google Scholar
Mas, J.R., Alonso, A. & Guimera, J. (1993) Evolution tectonosedimentaria de una cuenca extensional intraplaca: La cuenca finijurasica-eocretacica de Los Cameras (La Ríoja-Soria). Revista de la Sociedad Geologica de Espaha, 6, 129–144.Google Scholar
Moore, D.M. & Reynolds, R.L. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 332 pp.Google Scholar
Munier, P. & Meneret, J. (1950) Identification des argiles cerámiques pour le dilatométrie en cm. Bulletin de la Societé française de Céramique, 7, 6–17.Google Scholar
NORMA U.N.E. 67027 (1984) Ladrillos de arcilla cocida. Determinatión de la absorción de agua.Google Scholar
NORMA U.N.E. 67042 (1988) Piezas cerámicas de arcilla cocida de gran formato. Determinatión de la resistencia a la flexión.Google Scholar
NORMA U.N.E. 103-104 (1993) Determinatión del limite plástico de un suelo.Google Scholar
NORMA U.N.E. 103-103 (1994) Determinatión del límite líquido de un suelo por el método del aparato de Casagrande.Google Scholar
NORMA U.N.E. 103-101 (1995) Análisis granulométrico de suelos por tamizado.Google Scholar
Palmonari, C. & Nassetti, G. (1993) Traditional ceramics. Evolution in the last decade and future trends. Third Euro-ceramics Conference, 2 (Durán, P. and Fern, J.F.ández, editors). Faenza Editrice, Italy, pp. 879-891.Google Scholar
Peters, T. & Iberg, R. (1978) Mineralogical changes during firing of calcium-rich brick clays. American Ceramic Society Bulletin, 57, 503509.Google Scholar
Salas, R., Guimera, J., Mas, R., Martin Closas, C., Melendez, A. & Alonso, A. (2001) Evolution of the Mesozoic Central Iberian Rift System and its Cenozoic inversion (Iberian Chain). Pp. 145–186 in: Peri-Tethyan Rift/Wrench Basins and Passive Margins (Ziegler, P.A., Cavazza, W., Robertson, A.H.F. and Crasquin-Soleau, S., editors). Museum National D'Histoire Naturelle, Memories, I, 186. Peri-Tethys Memoir 6.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierra shale. US Geological Survey Professional Paper, 391-c, 1–31.Google Scholar
Shepard, F.P. (1954) Nomenclature based on sand-siltclay ratios. Journal of Sedimentary Petrography, 24, 151158.Google Scholar
Winkler, H.G.F. (1954) ‘Bedeutung der Korngrossenverteilung und des Mineral-bestandes von Tonen fur die Herstellung grobkeramischer Erzeugnisse'. Berichte der Deutschen Keramischen Gesellscha.fi, 31, 337-343.Google Scholar