Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-11T09:13:03.465Z Has data issue: false hasContentIssue false

Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-Exchanged Forms

Published online by Cambridge University Press:  28 February 2024

Isabelle Bérend
Affiliation:
Laboratoire Environment et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
Jean-Maurice Cases
Affiliation:
Laboratoire Environment et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
Michèle François
Affiliation:
Laboratoire Environment et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
Jean-Pierre Uriot
Affiliation:
Centre de Recherches Pétrographique et Géochimique, BP.20, Vandœuvre, France
Laurent Michot
Affiliation:
Laboratoire Environment et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
Armand Masion
Affiliation:
Laboratoire Environment et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
Fabien Thomas
Affiliation:
Laboratoire Environment et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France

Abstract

Methods previously used to distinguish between water adsorbed on external surfaces and in the interlamellar space of Na-montmorillonite during adsorption and desorption of water vapor have been extended to a set of homoionic Li-, Na-, K-, Rb- and Cs-montmorillonite. The textural and structural features have been investigated at different stages of hydration and dehydration using controlled-rate thermal analysis, nitrogen adsorption volumetry, water adsorption gravimetry, immersion microcalorimetry and X-ray powder diffraction under controlled humidity conditions. During hydration, the size of the quasi-crystals decreases from 33 layers to 8 layers for Na-montmorillonite and from 25 layers to 10 layers for K-montmorillonite, but remains stable around 8–11 layers for Cs-montmorillonite. Each homoionic species leads to a one-layer hydrate, which starts forming at specific values of water vapor relative pressure. Li-, Na- and K-montmorillonite can form a two-layer hydrate. By comparing experimental X-ray diffraction patterns with theoretically simulated ones, the evolution of structural characteristics of montmorillonites during hydration or desorption can be described. Using structural and textural data, it is shown that during adsorption: (1) the rate of filling of interlamellar space of the one layer hydrate increases with the relative pressure but decreases with the size of the cations; and (2) the different hydrated states are never homogeneous.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylmore, L. A. G., and Quirk, J. P. 1971. Domains and quasi-cristalline regions in clay systems. Soil Sci. Soc. Amer. J. 35: 652654.Google Scholar
Ben Brahim, J., 1985. Contribution à l‘étude des systèmes eau-argile par diffraction des rayons X. structure des couches insérées et mode d'empilement des feuillets dans les hydrates homogènes à une ou deux couches d'eau de la beidilite-Na: Thèse de doctorat d‘état es sciences physiques, Orléans, 183 pp.Google Scholar
Ben Brahim, J., Besson, G., and Tchoubar, C. 1984. Etude des profils des bandes de diffraction X d'une beidillite-Na hydratée à deux couches d'eau. Détermination du mode d'empilement des feuillets et des sites occupés par l'eau. J. Appl. Cryst. 17: 179188.Google Scholar
Ben Brahim, J., Besson, G., and Tchoubar, C. 1985. Layer Succession and Water Molecules Arrangement in a Homogeneous Two-Layer Na-Smectite. 5th Meeting of the European Clay Groups, Prague. J. Konta, ed. Praha: Univerzita Karlova, 6575.Google Scholar
Ben Brahim, J., Armagan, N., Besson, G., and Tchoubar, C. 1986. Méthode diffractométrique de caractérisation des états d'hydratation des smectites et stabilité relative des couches d'eau insérées. Clay Miner. 21: 111124.CrossRefGoogle Scholar
Ben Ohoud, M., and Damme, H. Van. 1990. La texture fractale des argiles gonflantes. C. R. Acad. Sci. Paris 311: Série II, 665670.Google Scholar
Berend, I., 1991. Les mécanismes d'hydratation de montmorillonites homoiniques pour des pressions relatives inférieures à 0,95. Thèse de doctorat. INPL-Nancy, France, 330 pp.Google Scholar
Besson, G., 1980. Structure des smectites dioctaédriques. Paramètres conditionnant les fautes d'empilement des feuillets. Thèse de doctorat d'Etat. Université d'Orléans, France, 146 pp.Google Scholar
Caillère, S., Hénin, S., and Rautureau, M. 1982a. Minéralogie des argiles. 1. Structure et propriétés physico-chimiques, 2e édition, Paris: Masson, 184 pp.Google Scholar
Caillère, S., Hénin, S., and Rautureau, M. 1982b. Minéralogie des argiles. 2. Classification et nomenclature, 2 e édition, Paris: Masson, 189 pp.Google Scholar
Cases, J. M., and François, M. 1982. Etude des propriétés de l'eau au voisinage des interfaces. Agronomie 2: 931938.CrossRefGoogle Scholar
Cases, J. M., 1985. Personal communication.Google Scholar
Cases, J. M., Berend, I., Besson, G., François, M., Uriot, J. P., Thomas, F., and Poirier, J. E. 1992a. Mechanism of adsorption-desorption of water vapor by homoionic montmorillonite. 1. The sodium exchanged form. Langmiur 8: 27302739.CrossRefGoogle Scholar
Cases, J. M., Pons, C. H., Berend, I., François, M., Min, Jin Hong, Tchoubar, D., Besson, G., Thomas, F., and Bottero, J. Y. 1992b. Fluid-swelling clays interaction. Revue de l'Institut Français de Pétrole 47: 217238.Google Scholar
Cebula, D. J., Thomas, R. K. and White, J. W. 1980. Small angle neutron scattering from dilute aqueous dispersion of clays. J. C. S. Faraday I 76: 314321.Google Scholar
de Boer, J. H., Lippens, B. C., Linsen, B. G., Broekhollf, J. C. P., Van der Heuvel, A., and Osinga, Th. J. 1966. Thet-curve of multimolecular N2 adsorption. J. Coll. Interface Sci. 21: 405414.Google Scholar
Delon, J. F., 1970. Contribution à l'étude de la surface spécifique et de la microporosité des minéraux et des roches. Thèse de doctorat ès sciences physiques. Nancy, France: INPL, 187 pp.Google Scholar
Drits, V. A., 1975. The structural and crystallochemical features of layer-silicates. In Crystallochemistry of Minerals and Geological Problems. Kossovskaya, A. G., ed. Novosibirsk: Nauka, 3551 (in Russian).Google Scholar
Drits, V. A., and Sakharov, B. A. 1976. X-ray Structure Analysis of Interstratified Minerals. Moscow: Nauka, 255 pp. (in Russian).Google Scholar
Drits, V. A., and Tchoubar, C. 1990. X-ray Diffraction by Disordered Lamellar Structures. Berlin: Springer-Verlag, 371 pp.Google Scholar
Fripiat, J. J., Cases, J. M., François, M., and Letellier, M. 1982. Thermodynamic and microdynamic behavior of water in clay suspensions and gels. J. Coll. Interface Sci. 89: 378400.Google Scholar
Glaeser, R., and Méring, J. 1968. Domaines d'hydratation homogène des smectites. C. R. Acad. SC. Paris série D 267: 463466.Google Scholar
Grillet, Y., Cases, J. M., François, M., Rouquerol, J., and Poirier, J. E. 1988. Modification of the porous structure and surface area of sepiolite under vacuum thermal treatment. Clays & Clay Miner. 36: 233242.Google Scholar
Hagymassy, J., Brunauer, S., and Mikhail, R. S. 1969. Pore structure analysis by water vapor adsorption. 1. T-curves for water vapor. J. Coll. Interface Sci. 29: 485491.Google Scholar
Harkins, W. D., and Jura, G. 1944. An absolute method for the determination of the area of a finely divided crystalline solid. J. Am. Chem. Soc. 66: 13661375.Google Scholar
Iwasaki, T., and Watanabe, T. 1988. Distribution of Ca and Na ions in dioctahedral smectites and interstratified dioctahedral mica-smectites. Clays & Clay Miner. 36: 7382.CrossRefGoogle Scholar
Kamel, M. W., 1981. Etude de l'imbibition, du gonflement et du desséchement de quelques argiles. Thèse doctorat. Université Toulouse, 187 pp.Google Scholar
Kawano, M., and Tomita, K. 1991. X-ray powder reflection studies on the rehydration properties of beidellite. Clays & Clay Miner. 39: 7783.Google Scholar
Keren, R., and Shainberg, I. 1974. Water vapor isotherms and heat of immersion of Na/Ca- montmorillonite systems. I: Homoionic clay. Clays & Clay Miner. 23: 193200.Google Scholar
Kerm, A. G., 1988. Etude et caractérisation des premiers stades d'hydratation d'une nontronite. Thèse d'Université, Orléans, France, 56 pp.Google Scholar
Kraehenbuehl, F., Stoeckli, H. F., Brunner, F., Kahr, G., and Mueller-von Moos, M. 1987. Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques: I. Micropore volumes and internal surface areas, following Dubinin's theory. Clay Miner. 22: 19.Google Scholar
Mamy, J., 1968. Recherches sur l'hydratation de la montmorillonite: Propriétés diélectriques et structure du film d'eau. Ann. Agron. 19: 175292.Google Scholar
Martin-Vivaldi, J. L. M., Macewan, D. M. C., and Gallego, M. Rodriguez. 1963. Effects of thermal treatment on the c-axial dimension of montmorillonite as a function of the exchange cation. In Proc. Int. Clay Conf., Stockholm. Vol. 1. New York: Pergamon Press, 4551.Google Scholar
Mooney, R. W., Keenan, A. G., and Wood, L. A. 1952. Adsorption of water vapor by montmorillonite. II—Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. J. Am. Chem. Soc. 74: 13711374.Google Scholar
More, D. H., and Hower, J. 1986. Ordered interstratification of dehydrated and hydrated Na-smectite. Clays & Clay Miner. 34: 379384.Google Scholar
Partyka, S., Rouquerol, F., and Rouquerol, J. 1979. Calorimetric determination of surface areas. Possibilities of a modified Harkins and Jura procedure. J. Coll. Interface Sci. 68: 2131.Google Scholar
Pézerat, H., and Mering, J. 1954. Recherches sur la position des cations échangeables et de l'eau dans les montmorillonites. CRAS Paris 265: D, 529532.Google Scholar
Poinsignon, C., and Cases, J. M. 1978. Etude de l'eau d'hydratation des cations compensateurs de smectites homoioniques. Bull. Mineral. 101: 469477.Google Scholar
Poirier, J. E., François, M., Cases, J. M., and Rouquerol, J. Study of water adsorption on Na-montmorillonite. New data owing to the use of a continuous procedure. In Proceedings of the Second Engineering Foundation Conference on Fundamental of Adsorption. Liapis, A. I., 1987 ed. New York: AIChE. Pub., 473482.Google Scholar
Rouquerol, J., 1989. Controlled transformation rate thermal analysis: The hidden face of the thermal analysis. Thermodynamica Acta 144: 209224.Google Scholar
Suquet, H., Prost, R., and Pezerat, H. 1982. Etude par spectrométrie infrarouge et diffraction des rayons X des interactions cations-feuillets dans les phases à 14.6, 12.2 et 10.1 Å d'une saponite-Li de synthèse. Clay Miner. 17: 225235.Google Scholar
Schramm, L. I., and Kwak, J. C. T. 1982. Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspension. Clays & Clay Miner. 30: 4048.Google Scholar
Sing, K. S. W., 1982. Reporting physical data for gas/solid systems with special reference to the determination of surface area and microporosity. Pure and Applied Chem. 54: 22012218.CrossRefGoogle Scholar
Sposito, G., and Prost, R. 1982. Structure of water adsorbed on smectites. Chemical Reviews 82: 554573.Google Scholar
Stul, M. S., and Leemput, L. Van. 1982. The texture of montmorillonites as influenced by the exchangeable inorganic cation and the drying method. I. External surface area related to the stacking units of the aggregates. Surface Technology 16: 89100.Google Scholar
Suquet, H., and Pezerat, H. 1987. Parameters influencing layer stacking types in saponite and vermiculite: A review. Clays & Clay Miner. 35: 353362.Google Scholar
Tarasevitch, J. I., and Ovcharenko, F. D. 1975. Adsorbtisiya na glinitykh mineralakh Naukova Dumka, Kiev, 352 pp. (in Russian).Google Scholar
Tessier, D., 1984. Etude expérimentale de l'organisation des matériaux argileux. Thèse doct. Université Paris VI, 361 pp.Google Scholar
Veniale, F., Setti, M., and Tortelli, M. 1986. Stabilizzazione-consolidamento di terreni argillosi mediante diffusione di sali. In XVI Convegno Nazionale di Geotecnica, Bologna, 1986. Associazione geotecnica italiana. 387396.Google Scholar
Whalley, W. R., and Mullins, C. E. 1991. Effect of saturating cation on tactoid size distribution in bentonite suspensions. Clay Miner. 26: 1117.Google Scholar
Yvon, J., Baudracco, J., Cases, J. M. and Weiss, J. 1990. Eléments de minéralogie quantitative en microanalyse des argiles. In Materiaux argileux, structure, propriétés et applications. Decarreau, ed. Paris: SFMCGFA, 473488.Google Scholar