Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-10T08:39:18.241Z Has data issue: false hasContentIssue false

Uniqueness of the regular waiting-time type solution of the thin film equation

Published online by Cambridge University Press:  16 April 2012

MARINA CHUGUNOVA
Affiliation:
School of Mathematical Sciences, Claremont Graduate University, 710 N. College Avenue, Claremont, CA 91711, USA email: chugunovamar@yahoo.ca
JOHN R. KING
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK email: john.king@nottingham.ac.uk, taranets_r@yahoo.com
ROMAN M. TARANETS
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK email: john.king@nottingham.ac.uk, taranets_r@yahoo.com

Abstract

The main result of this paper is the proof of uniqueness of non-negative entropy solutions of the thin film equation ht + (|h|nhxxx)x = 0 for < n < 4. The uniqueness proved under assumptions that the initial data satisfy a finite β-entropy condition for some negative enough exponent β and that the solution is locally monotone at the touchdown point. The new dissipated functional recently constructed by Laugesen (Commun. Pure Appl. Anal., 4(3):613–634, 2005) is used to prove an auxiliary energy equality, and then Grönwall's lemma leads to uniqueness.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Beretta, E., Bertsch, M. & Dal Passo, R. (1995) Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Rational Mech. Anal. 129 (2), 175200.CrossRefGoogle Scholar
[2]Bernis, F. & Friedman, A. (1990) Higher order nonlinear degenerate parabolic equations. J. Differential Equations 83 (1), 179206.CrossRefGoogle Scholar
[3]Bertozzi, A. L., Brenner, M. P., Dupont, T. F. & Kadanoff, L. P. (1994) Singularities and similarities in interface flows. In: Trends and Perspectives in Applied Mathematics. Appl. Math. Sci., Vol. 100. Springer, New York, pp. 155208.CrossRefGoogle Scholar
[4]Blowey, J. F., King, J. R. & Langdon, S. (2007) Small- and waiting-time behavior of the thin-film equation. SIAM J. Appl. Math. 67 (6), 17761807.CrossRefGoogle Scholar
[5]Chugunova, M. & Taranets, R. M. (2011) New dissipated energy for the unstable thin film equation. Commun. Pure Appl. Anal. 10 (2), 613624.CrossRefGoogle Scholar
[6]Dal Passo, R., Giacomelli, L. & Grün, G. (2001) A waiting time phenomenon for thin film equations. Ann. Scuola Norm. Sup. Pisa. 30, 437463.Google Scholar
[7]Di Benedetto, E. (1993) Degenerate Parabolic Equations. Universitext, Springer-Verlag, New York, pp. xvi+387.CrossRefGoogle Scholar
[8]Elliot, C. M. & Garcke, H. (1996) On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (2), 404423.Google Scholar
[9]Giacomelli, L., Knupfer, H. & Otto, F. (2008) Smooth solutions for a thin-film equation around the staionary solution. J. Differ. Equ. 245 (6), 14541506.CrossRefGoogle Scholar
[10]Grün, G. (1995) Degenerate parabolic differential equations of fourth order and plasticity model with non-local hardening. Z. Anal. Anwend. 14 (3), 541574.CrossRefGoogle Scholar
[11]King, J. R. & Bowen, M. (2001) Moving boundary problems and non-uniqueness for the thin film equation. The dynamics of thin fluid films. European J. Appl. Math. 12 (3), 321356.CrossRefGoogle Scholar
[12]Laugesen, R. S. (2005) New dissipated energies for the thin fluid film equation. Commun. Pure Appl. Anal. 4 (3), 613634.CrossRefGoogle Scholar
[13]Shishkov, A. E. & Taranets, R. (2003) Effect of time delay of support propagation in equations of thin films. Ukrainian Math. J. 55, 11311152.Google Scholar
[14]Shishkov, A. E. & Taranets, R. M. (2004) On the equation of the flow of thin films with nonlinear convection in multidimensional domains. Ukr. Mat. Visn. 1 (3), 402444.Google Scholar