Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-11T13:02:27.132Z Has data issue: false hasContentIssue false

K-THEORY FOR THE C*-ALGEBRAS OF THE SOLVABLE BAUMSLAG–SOLITAR GROUPS

Published online by Cambridge University Press:  18 October 2017

SANAZ POOYA
Affiliation:
Institut de Mathéematiques, Université de Neuchâtel Unimail, Rue Emile Argand 11 CH-2000 Neuchatel, Switzerland e-mail: sanaz.pooya@unine.ch, alain.valette@unine.ch
ALAIN VALETTE
Affiliation:
Institut de Mathéematiques, Université de Neuchâtel Unimail, Rue Emile Argand 11 CH-2000 Neuchatel, Switzerland e-mail: sanaz.pooya@unine.ch, alain.valette@unine.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a new computation of the K-theory of the group C*-algebra of the solvable Baumslag–Solitar group BS(1, n) (n ≠ 1); our computation is based on the Pimsner–Voiculescu 6-terms exact sequence, by viewing BS(1, n) as a semi-direct product ℤ[1/n] ⋊ ℤ. We deduce from it a new proof of the Baum–Connes conjecture with trivial coefficients for BS(1, n).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2017 

References

REFERENCES

1. Béguin, C., Bettaieb, H. and Valette, A., K-theory for the C*-algebras of one-relator groups, K-Theory 16 (1999), 277298.Google Scholar
2. Baum, P. and Connes, A., Geometric K-theory for Lie groups and foliations, Enseign. Math. 46 (2000), 342.Google Scholar
3. Baum, P., Connes, A. and Higson, N., Classifying space for proper actions and K-theory of group C*-algebras, Contemp. Math. 164 (1994), 241292.Google Scholar
4. Blackadar, B., K-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5 (Springer-Verlag, New York, 1986).CrossRefGoogle Scholar
5. Brenken, B., K-groups of solenoidal algebras I, Proc. Amer. Math. Soc. 123 (5) (1995), 14571464.Google Scholar
6. Brenken, B. and Jørgensen, P. E. T., A family of dilation crossed product algebras, J. Oper. Theory 25 (1991), 299308.Google Scholar
7. Higson, N. and Kasparov, G., E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), 2374.Google Scholar
8. Iochum, B., Masson, T., Schücker, T. and Sitarz, A., κ-Deformation and spectral triples, Acta Phys. Polon. Supp. 4 (2011), 305324.CrossRefGoogle Scholar
9. Lyndon, R. C., Cohomology theory of groups with a single defining relation, Ann. Math. 52 (1950), 650665.Google Scholar
10. Mislin, G. and Valette, A., Proper group actions and the Baum–Connes conjecture. Advanced courses in mathematics - CRM Barcelona (Birkhäuser, Basel, 2003).Google Scholar
11. Oyono-Oyono, H., La conjecture de Baum–Connes pour les groupes agissant sur les arbes, C. R. Acad. Sci. Paris, Sér. I 326 (1998), 799804.Google Scholar
12. Tu, J.-L., The Baum–Connes conjecture and discrete group actions on trees, K-Theory 17 (1999), 303318.Google Scholar
13. Pimsner, M. and Voiculescu, D., Exact sequences for K-groups and Ext-groups of certain cross product C*- algebras, Oper. Theory 4 (1980), 93118.Google Scholar
14. Sudo, T., K-theory for the group C*-algebras of certain solvable discrete groups, Hokkaido Math. J. 43 (2014), 209260.CrossRefGoogle Scholar