Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-07T16:48:37.559Z Has data issue: false hasContentIssue false
Accepted manuscript

The effects of dry heat and steam on germination of dry and imbibed seeds of the invasive garden lupine (Lupinus polyphyllus Lindl.)

Published online by Cambridge University Press:  16 May 2024

Elin L. Blomqvist
Affiliation:
PhD candidate (E-mail: elin.blomqvist@kau.se), Department of Environmental and Life Sciences, Biology, Karlstad University, Karlstad, Sweden
Ewa H. Orlikowska
Affiliation:
PhD, Department of Environmental and Life Sciences, Biology, Karlstad University, Karlstad, Sweden
Hanna Paikert
Affiliation:
PhD candidate, Justus Liebig University Giessen, Division of Landscape Ecology and Landscape Planning, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Giessen, Germany
R. Lutz Eckstein
Affiliation:
Professor, Department of Environmental and Life Sciences, Biology, Karlstad University, Karlstad, Sweden

Abstract

Regularly mown road verges are an important habitat for conservation of grassland vegetation. Disturbance and movement of seed-contaminated soil during road construction and maintenance makes road verges susceptible to the establishment of invasive alien plants such as garden lupine (Lupinus polyphyllus Lindl.). To combat spread of L. polyphyllus via seeds, we tested methods for seed destruction using heat. This study aimed at developing heat eradication methods for dry and imbibed L. polyphyllus seeds applying dry heat (88, 93, 98, 103 C at 1, 3, 5, 10 min) in a laboratory, steam (85, 90, 95 C at 3, 5, 10 min) in a test-box steaming device and (97 C at 10-17 min; dry seeds only) in a stationary soil-steaming machine (S30). In order to speed up water absorption and post-treatment germination, the imbibed seeds were manually scarified before the heat treatment and the dry seeds afterwards. Additionally, germination of two different age seed batches was tested applying dry heat (88, 98 C at 3, 5 min). The results showed that steam treatments inhibited seed germination more than dry heat in both dry and imbibed seeds. Germination dropped to < 5% when steamed at ≥ 90 C or dry-heated at > 100 C. Seed germination decreased with higher temperatures and longer exposure times. Imbibed seeds exhibited lower germination compared to dry seeds for dry and steam heat. Approximately 0.5% of dry seeds germinated when steamed using S30. 2022-collected seeds were less sensitive to dry heat than seeds from 2020. In conclusion, hot steam is more effective in reducing L. polyphyllus seed germination than dry heat. Thus, to successfully eradicate L. polyphyllus seeds in soil masses, we recommend steaming them at 97 C for at least 10 minutes.

Type
Research Article
Copyright
© Weed Science Society of America, 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)