Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T03:05:34.530Z Has data issue: false hasContentIssue false

Flow reversal and multiple states in turbulent Rayleigh–Bénard convection with partially isothermal plates

Published online by Cambridge University Press:  13 May 2024

Jin Hu
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
Shengqi Zhang
Affiliation:
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315201, PR China
Zhenhua Xia*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
*
Email address for correspondence: xiazh1006@163.com

Abstract

This paper examines turbulent Rayleigh–Bénard convection in a two-dimensional square cavity with partially isothermal conducting plates on the horizontal walls. The study reveals that controlling the relative locations of the partially isothermal plates can accelerate or completely suppress the reversals of large-scale circulation. The heat transfer efficiency, which is characterised by the time-averaged Nusselt number, is generally higher than that of the traditional Rayleigh–Bénard convection, and can be further enhanced when the reversal is fully suppressed. The reversal in our cases is mainly caused by the competition between the two alternately growing ‘corner’ vortices, fed by the detaching plumes from the hot/cold plates. This differs from those reported in traditional Rayleigh–Bénard convection. Fourier mode decomposition of the kinetic energy, reflecting the diverse contributors, in the reversing cases further emphasises the distinction between the current system and traditional Rayleigh–Bénard convection. In addition, multiple states were observed where the conducting plates were positioned at specific relative locations and had different initial conditions. It has been observed that the difference in Nusselt numbers between the anticlockwise and clockwise states increases linearly with the distance between the upper cold and lower hot plates. Moreover, the analysis of the buoyancy moment and the stability of the primary roll structure suggests that the higher heat transfer efficiency between the two states is strongly linked to a more stable primary roll structure. This study presents a new approach for controlling flow reversal and improving heat transfer efficiency by modifying the non-global conducting boundary and initial conditions.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.10.1103/RevModPhys.81.503CrossRefGoogle Scholar
Bakhuis, D., Ostilla-Mónico, R., Van Der Poel, E.P., Verzicco, R. & Lohse, D. 2018 Mixed insulating and conducting thermal boundary conditions in Rayleigh–Bénard convection. J. Fluid Mech. 835, 491511.10.1017/jfm.2017.737CrossRefGoogle Scholar
Bassani, F., Poggi, D., Ridolfi, L. & Von Hardenberg, J. 2022 Rayleigh–Bénard convection with thermal boundary inhomogeneities. Phys. Rev. E 105, 025108.10.1103/PhysRevE.105.025108CrossRefGoogle ScholarPubMed
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95 (2), 024502.CrossRefGoogle Scholar
Chandra, M. & Verma, M.K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83, 067303.10.1103/PhysRevE.83.067303CrossRefGoogle ScholarPubMed
Chandra, M. & Verma, M.K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110, 114503.CrossRefGoogle ScholarPubMed
Chen, X., Huang, S.-D., Xia, K.-Q. & Xi, H.-D. 2019 Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection. J. Fluid Mech. 877, R1.10.1017/jfm.2019.624CrossRefGoogle Scholar
Chen, X., Wang, D.-P. & Xi, H.-D. 2020 Reduced flow reversals in turbulent convection in the absence of corner vortices. J. Fluid Mech. 891, R5.CrossRefGoogle Scholar
Chong, K.-L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3, 013501.CrossRefGoogle Scholar
Faranda, D., Sato, Y., Saint-Michel, B., Wiertel, C., Padilla, V., Dubrulle, B. & Daviaud, F. 2017 Stochastic chaos in a turbulent swirling flow. Phys. Rev. Lett. 119, 014502.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.10.1103/PhysRevLett.86.3316CrossRefGoogle ScholarPubMed
Huang, S.-D., Wang, F., Xi, H.-D. & Xia, K.-Q. 2015 Comparative experimental study of fixed temperature and fixed heat flux boundary conditions in turbulent thermal convection. Phys. Rev. Lett. 115, 154502.10.1103/PhysRevLett.115.154502CrossRefGoogle ScholarPubMed
Huang, S.-D. & Xia, K.-Q. 2016 Effects of geometric confinement in quasi-2-D turbulent Rayleigh–Bénard convection. J. Fluid Mech. 794, 639654.10.1017/jfm.2016.181CrossRefGoogle Scholar
Huang, Y., Xia, Z. & Chen, S. 2020 Hysteresis behaviour in spanwise rotating plane Couette flow at $Re_w=2600$. J. Turbul. 16, 113.Google Scholar
Huang, Y., Xia, Z., Wan, M., Shi, Y. & Chen, S. 2019 Hysteresis behavior in spanwise rotating plane Couette flow with varying rotation rates. Phys. Rev. Fluids 4 (5), 052401.10.1103/PhysRevFluids.4.052401CrossRefGoogle Scholar
Huang, J.M. & Zhang, J. 2023 Rayleigh–Bénard thermal convection perturbed by a horizontal heat flux. J. Fluid Mech. 954, R2.CrossRefGoogle Scholar
Huisman, S.G., van der Veen, R.C.A., Sun, C. & Lohse, D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.CrossRefGoogle ScholarPubMed
Lenardic, A., Moresi, L., Jellinek, A.M. & Manga, M. 2005 Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet. Sci. Lett. 234, 317333.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 778, R5.Google Scholar
Mao, Y. 2021 An insulating plate drifting over a thermally convecting fluid: the effect of plate size on plate motion, coupling modes and flow structure. J. Fluid Mech. 916, A18.CrossRefGoogle Scholar
Mao, Y. 2022 An insulating plate drifting over a thermally convecting fluid: the thermal blanket effect on plume motion and the emergence of a unidirectionally moving mode. J. Fluid Mech. 942, A25.CrossRefGoogle Scholar
Nandukumar, Y., Chakraborty, S., Verma, M.K. & Lakkaraju, R. 2019 On heat transport and energy partition in thermal convection with mixed boundary conditions. Phys. Fluids 31, 066601.CrossRefGoogle Scholar
Ostilla-Mónico, R. & Amritkar, A. 2020 Regime crossover in Rayleigh–Bénard convection with mixed boundary conditions. J. Fluid Mech. 903, A39.CrossRefGoogle Scholar
Ostilla-Mónico, R., Lohse, D. & Verzicco, R. 2016 Effect of roll number on the statistics of turbulent Taylor–Couette flow. Phys. Rev. Fluids 1, 054402.CrossRefGoogle Scholar
Ravelet, F., Marié, L., Chiffaudel, A. & Daviaud, F. 2004 Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Phys. Rev. Lett. 93 (16), 164501.CrossRefGoogle Scholar
Shishkina, O., Stevens, R.J.A.M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.CrossRefGoogle Scholar
Sugiyama, K., Ni, R., Stevens, R.J.A.M., Chan, T.S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.CrossRefGoogle ScholarPubMed
Van Der Poel, E.P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.CrossRefGoogle Scholar
Van Der Poel, E.P., Stevens, R.J.A.M & Lohse, D. 2011 Connecting flow structures and heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 84, 045303.CrossRefGoogle ScholarPubMed
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25, 085110.CrossRefGoogle Scholar
Wang, B.-F., Zhou, Q. & Sun, C. 2020 a Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6, eaaz8239.CrossRefGoogle ScholarPubMed
Wang, F., Huang, S.-D. & Xia, K.-Q. 2017 Thermal convection with mixed thermal boundary conditions: effects of insulating lids at the top. J. Fluid Mech. 817, R1.CrossRefGoogle Scholar
Wang, Q., Chong, K.L., Stevens, R.J.A.M, Verzicco, R. & Lohse, D. 2020 b From zonal flow to convection rolls in Rayleigh–Bénard convection with free-slip plates. J. Fluid Mech. 905, A21.CrossRefGoogle Scholar
Wang, Q., Verzicco, R., Lohse, D. & Shishkina, O. 2020 c Multiple states in turbulent large-aspect-ratio thermal convection: what determines the number of convection rolls? Phys. Rev. Lett. 125, 074501.CrossRefGoogle ScholarPubMed
Wang, Q., Wan, Z.-H., Yan, R. & Sun, D.-J. 2018 a Multiple states and heat transfer in two-dimensional tilted convection with large aspect ratios. Phys. Rev. Fluids 3, 113503.CrossRefGoogle Scholar
Wang, Q., Xia, S.-N., Wang, B-F., Sun, D.-J., Zhou, Q. & Wan, Z.-H 2018 b Flow reversals in two-dimensional thermal convection in tilted cells. J. Fluid Mech. 849, 355372.CrossRefGoogle Scholar
Wang, Y., Lai, P.-Y., Song, H. & Tong, P. 2018 c Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4 (11), eaat7480.CrossRefGoogle ScholarPubMed
Whitehead, J.A., Shea, E. & Behn, M.D. 2011 Cellular convection in a chamber with a warm surface raft. Phys. Fluids 23, 104103.CrossRefGoogle Scholar
Wu, J.-Z., Wang, B.-F. & Zhou, Q. 2022 Massive heat transfer enhancement of Rayleigh–Bénard turbulence over rough surfaces and under horizontal vibration. Acta Mechanica Sin. 38, 321319.CrossRefGoogle Scholar
Wyngaard, J.C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24, 205234.CrossRefGoogle Scholar
Xi, H.-D. & Xia, K.-Q. 2008 Flow mode transitions in turbulent thermal convection. Phys. Fluids 20, 055104.CrossRefGoogle Scholar
Xi, H.-D., Zhang, Y.-B., Hao, J.-T. & Xia, K.-Q. 2016 Higher-order flow modes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 805, 3151.CrossRefGoogle Scholar
Xia, K.-Q., Huang, S.-D., Xie, Y.-C. & Zhang, L. 2023 Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence. Nat. Sci. Rev. 10, nwad012.CrossRefGoogle ScholarPubMed
Xia, Z., Shi, Y., Cai, Q., Wan, M. & Chen, S. 2018 Multiple states in turbulent plane couette flow with spanwise rotation. J. Fluid Mech. 837, 477490.CrossRefGoogle Scholar
Xie, Y.-C., Ding, G.-Y & Xia, K.-Q. 2018 Flow topology transition via global bifurcation in thermally driven turbulence. Phys. Rev. Lett. 120, 214501.CrossRefGoogle ScholarPubMed
Xu, A., Chen, X., Wang, F. & Xi, H.-D. 2020 Correlation of internal flow structure with heat transfer efficiency in turbulent Rayleigh–Bénard convection. Phys. Fluids 32 (10), 105112.CrossRefGoogle Scholar
Zhang, S., Chen, X., Xia, Z., Xi, H.-D., Zhou, Q. & Chen, S. 2021 Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh–Bénard convection with sidewall temperature control. J. Fluid Mech. 915, A14.CrossRefGoogle Scholar
Zhang, J. & Libchaber, A. 2000 Periodic boundary motion in thermal turbulence. Phys. Rev. Lett. 84, 43614364.CrossRefGoogle ScholarPubMed
Zhang, S., Xia, Z., Zhou, Q. & Chen, S. 2020 Controlling flow reversal in two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 891, R4.CrossRefGoogle Scholar
Zhao, C.-B., Zhang, Y.-Z., Wang, B.-F., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 Suppression of flow reversals via manipulating corner rolls in plane Rayleigh–Bénard convection. J. Fluid Mech. 946, A44.CrossRefGoogle Scholar
Zhong, J.-Q. & Zhang, J. 2007 Modeling the dynamics of a free boundary on turbulent thermal convection. Phys. Rev. E 76, 016307.CrossRefGoogle ScholarPubMed
Zimmerman, D.S., Triana, S.A. & Lathrop, D.P. 2011 Bi-stability in turbulent, rotating spherical Couette flow. Phys. Fluids 23, 065104.CrossRefGoogle Scholar
Supplementary material: File

Hu et al. supplementary movie 1

Temperature (colour) and velocity (vectors) fields during reversals at (xl,xu)=(−8/32,−8/32)
Download Hu et al. supplementary movie 1(File)
File 5.4 MB
Supplementary material: File

Hu et al. supplementary movie 2

Temperature (colour) and velocity (vectors) fields during reversals at (xl,xu)=(−8/32,−4/32)
Download Hu et al. supplementary movie 2(File)
File 6.1 MB
Supplementary material: File

Hu et al. supplementary movie 3

Temperature (colour) and velocity (vectors) fields during reversals at (xl,xu)=(−4/32,−8/32)
Download Hu et al. supplementary movie 3(File)
File 5.8 MB
Supplementary material: File

Hu et al. supplementary movie 4

Temperature (colour) and velocity (vectors) fields during reversals at (xl,xu)=(−4/32,−4/32)
Download Hu et al. supplementary movie 4(File)
File 6.2 MB
Supplementary material: File

Hu et al. supplementary movie 5

Temperature (colour) and velocity (vectors) fields of the AS state at (xl,xu)=(−3/32,1/32)
Download Hu et al. supplementary movie 5(File)
File 2.4 MB
Supplementary material: File

Hu et al. supplementary movie 6

Temperature (colour) and velocity (vectors) fields of the CS state at (xl,xu)=(−3/32,1/32)
Download Hu et al. supplementary movie 6(File)
File 2.5 MB