Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-12T05:48:04.127Z Has data issue: false hasContentIssue false

Modulations of turbulent/non-turbulent interfaces by particles in turbulent boundary layers

Published online by Cambridge University Press:  15 March 2024

Qingqing Wei
Affiliation:
Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Department of Mechanics, Lanzhou University, Lanzhou 730000, PR China
Ping Wang
Affiliation:
Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Department of Mechanics, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng*
Affiliation:
Research Center for Applied Mechanics, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, PR China
*
Email address for correspondence: xjzheng@xidian.edu.cn

Abstract

A spatially developing flat-plate boundary layer free from and two-way coupled with inertial solid particles is simulated to investigate the interaction between particles and the turbulent/non-turbulent interface. Particle Stokes numbers based on the outer scale are $St=2$ (low), 11 (moderate) and 53 (high). The Eulerian–Lagrangian point-particle approach is deployed for the simulation of particle-laden flow. The outer edge of the turbulent/non-turbulent interface layer is detected as an iso-surface of vorticity magnitude. Results show that the particles tend to accumulate below the interface due to the centrifugal effect of large-scale vortices in the outer region of wall turbulence and the combined barrier effect of potential flow. Consequently, the conditionally averaged fluid velocity and vorticity vary more significantly across the interface through momentum exchange and the feedback of force in the enstrophy transport. The large-scale structures in the outer layer of turbulence become smoother and less inclined in particle-laden flow due to the modulation of turbulence by the inertial particles. As a result, the geometric features of the interface layer are changed, namely, the spatial undulation increases, the fractal dimension decreases and the thickness becomes thinner in particle-laden flow as compared with unladen case. These effects become more pronounced as particle inertia increases.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Q. Wei, P. Wang and X. Zheng contributed equally to this work.

References

Abreu, H., Pinho, F.T. & da Silva, C.B. 2022 Turbulent entrainment in viscoelastic fluids. J. Fluid Mech. 934, 131.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Balamurugan, G., Rodda, A., Philip, J. & Mandal, A.C. 2020 Characteristics of the turbulent non-turbulent interface in a spatially evolving turbulent mixing layer. J. Fluid Mech. 894, A4.CrossRefGoogle Scholar
Bernardini, B. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Boetti, M. 2023 Pair dispersion of inertial particles crossing stably stratified turbulent/non-turbulent interfaces. Intl J. Multiphase Flow 166, 104502.CrossRefGoogle Scholar
Boetti, M. & Verso, L. 2022 Force on inertial particles crossing a two layer stratified turbulent/non-turbulent interface. Intl J. Multiphase Flow 154, 104153.CrossRefGoogle Scholar
Borrell, G. & Jiménez, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.CrossRefGoogle Scholar
Chauhan, K., Philip, J. & Marusic, I. 2014 a Scaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 751, 298328.CrossRefGoogle Scholar
Chauhan, K., Philip, J., de Silva, C., Hutchins, N. & Marusic, I. 2014 b The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.CrossRefGoogle Scholar
Chen, G., Wang, H., Luo, K. & Fan, J. 2022 Two-way coupled turbulent particle-laden boundary layer combustion over a flat plate. J. Fluid Mech. 948, A12.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1954 The free-stream boundaries of turbulent flows. NACA TN-3133, TR-1244.Google Scholar
Dorgan, A.J. & Loth, E. 2004 Simulation of particles released near the wall in a turbulent boundary layer. Intl J. Multiphase Flow 30 (6), 649673.CrossRefGoogle Scholar
Dorgan, A.J., Loth, E., Bocksell, T.L. & Yeung, P.K. 2005 Boundary-layer dispersion of near-wall injected particles of various inertias. AIAA J. 43 (7), 15371548.CrossRefGoogle Scholar
Eaton, J.K. 2009 Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Intl J. Multiphase Flow 35 (9), 792800.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Pergamon concentration of particles by turbulence. Intl J. Multiphase Flow 20 (94), 169209.CrossRefGoogle Scholar
Eisma, J., Westerweel, J., Ooms, G. & Elsinga, G.E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 116.CrossRefGoogle Scholar
Elsinga, G.E. & Da Silva, C.B. 2019 How the turbulent/non-turbulent interface is different from internal turbulence. J. Fluid Mech. 866, 216238.CrossRefGoogle Scholar
Fackrell, J.E. & Robins, A.G. 1982 Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J. Fluid Mech. 117, 126.CrossRefGoogle Scholar
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15 (2), 315.CrossRefGoogle Scholar
Fiedler, H. & Head, M.R. 1966 Intermittency measurements in the turbulent boundary layer. J. Fluid Mech. 25 (4), 719735.CrossRefGoogle Scholar
Gampert, M., Boschung, J., Hennig, F. & Gauding, M. 2014 The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J. Fluid Mech. 750, 578596.CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D.H. 2023 Direct numerical simulation of particle-laden flow in an open channel at $Re_{\tau }=5186$. J. Fluid Mech. 957, 126.CrossRefGoogle Scholar
Good, G.H., Gerashchenko, S. & Warhaft, Z. 2012 Intermittency and inertial particle entrainment at a turbulent interface: the effect of the large-scale eddies. J. Fluid Mech. 694, 371398.CrossRefGoogle Scholar
Grindle, T.J. & Burcham, F.W. 2003 Engine damage to a NASA DC-8-72 airplane from a high-altitude encounter with a diffuse volcanic ash cloud. NASA/TM-2003-212030.Google Scholar
Head, M.R. 1958 Entrainment in the turbulent boundary layer. Aero. Res. Counc. R. & M., 3152.Google Scholar
Hedley, T.B. & Keffer, J.F. 1974 Some turbulent/non-turbulent properties of the outer intermittent region of a boundary layer. J. Fluid Mech. 64 (4), 645678.CrossRefGoogle Scholar
Horwitz, J.A.K. & Mani, A. 2018 Correction scheme for point-particle models applied to a nonlinear drag law in simulations of particle-fluid interaction. Intl J. Multiphase Flow 101, 7484.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research, Proceedings of the Summer Program 1988, pp. 193–208.Google Scholar
Ishihara, T., Ogasawara, H. & Hunt, J.C.R. 2015 Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers. J. Fluids Struct. 53, 5057.CrossRefGoogle Scholar
Jahanbakhshi, R. 2021 Mechanisms of entrainment in a turbulent boundary layer. Phys. Fluids 33 (3), 035105.CrossRefGoogle Scholar
Jiménez, J., Hoyas, S., Simens, M.P. & Mizuno, Y. 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.CrossRefGoogle Scholar
Kim, K., Baek, S.J. & Sung, H.J. 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38 (2), 125138.CrossRefGoogle Scholar
Klebanoff, P.S. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA TR-1247.Google Scholar
Kohan, K.F. & Gaskin, S.J. 2020 The effect of the geometric features of the turbulent/non-turbulent interface on the entrainment of a passive scalar into a jet. Phys. Fluids 32 (9), 95114.CrossRefGoogle Scholar
Kovasznay, L.S.G., Kibens, V. & Blackwelder, R.F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of Stokes number. Phys. Fluids 27 (2), 140.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2019 The effect of wall-normal gravity on particle-laden near-wall turbulence. J. Fluid Mech. 873, 475507.CrossRefGoogle Scholar
Lee, J., Sung, H.J. & Zaki, T.A. 2017 Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 819, 165187.CrossRefGoogle Scholar
Lee, J.H., Sung, H.J. & Krogstad, P.-Å. 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.CrossRefGoogle Scholar
Lee, S.H. & Sung, H.J. 2007 Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125146.CrossRefGoogle Scholar
Li, D., Luo, K. & Fan, J. 2016 a Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. J. Fluid Mech. 802, 359394.CrossRefGoogle Scholar
Li, D., Luo, K. & Fan, J. 2017 Particle statistics in a two-way coupled turbulent boundary layer flow over a flat plate. Powder Technol. 305, 250259.CrossRefGoogle Scholar
Li, D., Luo, K. & Fan, J. 2018 Direct numerical simulation of turbulent flow and heat transfer in a spatially developing turbulent boundary layer laden with particles. J. Fluid Mech. 845, 417461.CrossRefGoogle Scholar
Li, D., Wei, A., Luo, K. & Fan, J. 2016 b Direct numerical simulation of a particle-laden flow in a flat plate boundary layer. Intl J. Multiphase Flow 79, 124143.CrossRefGoogle Scholar
Long, Y., Wang, J. & Pan, C. 2022 Universal modulations of large-scale motions on entrainment of turbulent boundary layers. J. Fluid Mech. 941, A68.CrossRefGoogle Scholar
Long, Y., Wu, D. & Wang, J. 2021 A novel and robust method for the turbulent/non-turbulent interface detection. Exp. Fluids 62 (7), 112.CrossRefGoogle Scholar
Lund, T.S., Wu, X. & Squires, K.D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140 (2), 233258.CrossRefGoogle Scholar
Mandelbrot, B.B. 1982 The Fractal Geometry of Nature. W. H. Freeman.Google Scholar
Mathew, J. & Basu, A.J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 103304.CrossRefGoogle Scholar
Nolan, K.P. & Zaki, T.A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.CrossRefGoogle Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.CrossRefGoogle Scholar
Philip, J., Meneveau, C., de Silva, C.M. & Marusic, I. 2014 Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26 (1), 015105.CrossRefGoogle Scholar
Ren, Y., Zhang, H., Wei, W., Wu, B. & Yu, S. 2019 Effects of turbulence structure and urbanization on the heavy haze pollution process. Atmos. Chem. Phys. 19 (2), 10411057.CrossRefGoogle Scholar
Reuther, N. & Kähler, C.J. 2018 Evaluation of large-scale turbulent/non-turbulent interface detection methods for wall-bounded flows. Exp. Fluids 59 (7), 117.CrossRefGoogle Scholar
Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C.M. 2014 Statistics of particle accumulation in spatially developing turbulent boundary layers. Flow Turbul. Combust. 92 (1–2), 2740.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Picano, F., Casciola, C.M., Brandt, L. & Henningson, D.S. 2012 Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584596.CrossRefGoogle Scholar
Schiller, L. & Naumann, A. 1933 Fundamental calculations in gravitational processing. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, H.M.J., Johansson, V.A., Alfredsson, H.P. & Henningson, S.D. 2009 Turbulent boundary layers up to $Re_\theta =2500$ studied through simulation and experiment. Phys. Fluids 21 (5), 051702.CrossRefGoogle Scholar
Semin, N.V., Golub, V.V., Elsinga, G.E. & Westerweel, J. 2011 Laminar superlayer in a turbulent boundary layer. Tech. Phys. Lett. 37 (12), 11541157.CrossRefGoogle Scholar
Shao, Y. & Dong, C.H. 2006 A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Change 52 (1–4), 122.CrossRefGoogle Scholar
Sillero, J., Jiménez, J., Moser, R.D. & Malaya, N.P. 2011 Direct simulation of a zero-pressure-gradient turbulent boundary layer up to $Re_\theta = 6650$. J. Phys.: Conf. Ser. 318, 07.Google Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.CrossRefGoogle Scholar
da Silva, C.B., dos Reis, R.J.N. & Pereira, J.C.F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.CrossRefGoogle Scholar
da Silva, C.B. & Taveira, R.R. 2010 The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22, 121702.CrossRefGoogle Scholar
de Silva, C.M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 15.CrossRefGoogle ScholarPubMed
Silva, T.S., Zecchetto, M. & da Silva, C.B. 2018 The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech. 843, 156179.CrossRefGoogle Scholar
Spalart, P.R. 1988 Direct simulation of a turbulent boundary layer up to $Re_\theta =1410$. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Sreenivasan, K.R., Ramshankar, R. & Meneveau, C. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79108.Google Scholar
Taveira, R.R. & da Silva, C.B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.CrossRefGoogle Scholar
Wu, D., Wang, J., Cui, G. & Pan, C. 2020 Effects of surface shapes on properties of turbulent/non-turbulent interface in turbulent boundary layers. Sci. China Technol. Sci. 63 (2), 214222.CrossRefGoogle Scholar
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.CrossRefGoogle Scholar
Wu, Z., Zaki, T.A. & Meneveau, C. 2019 High-Reynolds-number fractal signature of nascent turbulence during transition. Proc. Natl Acad. Sci. USA 117 (7), 34613468.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2018 Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers. Phys. Rev. Fluids 3 (9), 128.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2019 Passive scalar mixing near turbulent/non-turbulent interface in compressible turbulent boundary layers. Phys. Scr. 94, 044002.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2023 Reynolds number dependence of the turbulent/non-turbulent interface in temporally developing turbulent boundary layers. J. Fluid Mech. 964, A8.CrossRefGoogle Scholar