Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T18:42:51.525Z Has data issue: false hasContentIssue false

Velocity and acceleration statistics of heavy spheroidal particles in turbulence

Published online by Cambridge University Press:  18 July 2023

Sofia Allende
Affiliation:
Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium
Jérémie Bec*
Affiliation:
Université Côte d'Azur, Inria, CNRS, Calisto team, 06900 Sophia Antipolis, France Mines Paris, PSL University, CNRS, Cemef, 06900 Sophia Antipolis, France
*
Email address for correspondence: jeremie.bec@mines-paristech.fr

Abstract

Non-spherical particles transported by turbulent flow have a rich dynamics that combines their translational and rotational motions. Here, the focus is on small, heavy, inertial particles with a spheroidal shape fully prescribed by their aspect ratio. Such particles undergo an anisotropic, orientation-dependent viscous drag with the carrier fluid flow whose associated torque is given by the Jeffery equations. Direct numerical simulations of homogeneous, isotropic turbulence are performed to study systematically how the translational motion of such spheroidal particles depends on their shape and size. It is found that the Lagrangian statistics of both velocity and acceleration can be described in terms of an effective Stokes number obtained as an isotropic average over angles of the particle's orientation. Corrections to the translational motion of particles due to their non-sphericity and rotation can hence be recast as an effective radius obtained from such a mean.

Type
JFM Rapids
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, P., Ray, S.S. & Subramanian, G. 2020 Orientation dynamics of sedimenting anisotropic particles in turbulence. Phys. Rev. Lett. 125, 034501.CrossRefGoogle ScholarPubMed
Baker, L.J. & Coletti, F. 2022 Experimental investigation of inertial fibres and disks in a turbulent boundary layer. J. Fluid Mech. 943, A27.CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.CrossRefGoogle Scholar
Brenner, H. 1964 The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci. 19, 519539.CrossRefGoogle Scholar
Byron, M., Einarsson, J., Gustavsson, K., Voth, G.A., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101.CrossRefGoogle Scholar
Challabotla, N., Zhao, L. & Andersson, H. 2015 Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.CrossRefGoogle Scholar
Del Bello, E., Taddeucci, J., Scarlato, P., Giacalone, E. & Cesaroni, C. 2015 Experimental investigation of the aggregation-disaggregation of colliding volcanic ash particles in turbulent, low-humidity suspensions. Geophys. Res. Lett. 42, 10681075.CrossRefGoogle Scholar
Fan, F.-G. & Ahmadi, G. 1995 Dispersion of ellipsoidal particles in an isotropic pseudo-turbulent flow field. Trans. ASME J. Fluids Engng 117, 154161.CrossRefGoogle Scholar
Grythe, H., Ström, J., Krejci, R., Quinn, P. & Stohl, A. 2014 A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 14, 12771297.CrossRefGoogle Scholar
Gustavsson, K., Einarsson, J. & Mehlig, B. 2014 Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112, 014501.CrossRefGoogle ScholarPubMed
Gustavsson, K., Sheikh, M.Z., Lopez, D., Naso, A., Pumir, A. & Mehlig, B. 2019 Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New J. Phys. 21 (8), 083008.CrossRefGoogle Scholar
Homann, H., Dreher, J. & Grauer, R. 2007 Impact of the floating-point precision and interpolation scheme on the results of DNS of turbulence by pseudo-spectral codes. Comput. Phys. Commun. 177 (7), 560565.CrossRefGoogle Scholar
Horowitz, H.M., et al. 2020 Effects of sea salt aerosol emissions for marine cloud brightening on atmospheric chemistry: implications for radiative forcing. Geophys. Res. Lett. 47, e2019GL085838.CrossRefGoogle ScholarPubMed
Jeffery, G. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102 (715), 161179.Google Scholar
Jucha, J., Naso, A., Lévêque, E. & Pumir, A. 2018 Settling and collision between small ice crystals in turbulent flows. Phys. Rev. Fluids 3 (1), 014604.CrossRefGoogle Scholar
Klett, J.D. 1995 Orientation model for particles in turbulence. J. Atmos. Sci. 52 (12), 22762285.2.0.CO;2>CrossRefGoogle Scholar
Leblanc, K., et al. 2018 Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat. Commun. 9, 953.CrossRefGoogle ScholarPubMed
Marchioli, C. & Soldati, A. 2013 Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224, 23112329.CrossRefGoogle Scholar
Marchioli, C., Zhao, L. & Andersson, H.I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28, 013301.CrossRefGoogle Scholar
Marcus, G.G., Parsa, S., Kramel, S., Ni, R. & Voth, G.A. 2014 Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New J. Phys. 16, 102001.CrossRefGoogle Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.CrossRefGoogle Scholar
Ni, R., Ouellette, N.T. & Voth, G.A. 2014 Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G.A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.CrossRefGoogle ScholarPubMed
Prata, F. & Lynch, M. 2019 Passive earth observations of volcanic clouds in the atmosphere. Atmosphere 10 (4), 199.CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13, 093030.CrossRefGoogle Scholar
Roy, A., Gupta, A. & Ray, S.S. 2018 Inertial spheroids in homogeneous, isotropic turbulence. Phys. Rev. E 98, 021101.CrossRefGoogle ScholarPubMed
Salazar, J.P.L.C. & Collins, L.R. 2012 Inertial particle relative velocity statistics in homogeneous isotropic turbulence. J. Fluid Mech. 696, 4566.CrossRefGoogle Scholar
Sengupta, A., Carrara, F. & Stocker, R. 2017 Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543 (7646), 555558.CrossRefGoogle ScholarPubMed
Shapiro, M. & Goldenberg, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24, 6587.CrossRefGoogle Scholar
Sheikh, M.Z., Gustavsson, K., Lopez, D., Lévêque, E., Mehlig, B., Pumir, A. & Naso, A. 2020 Importance of fluid inertia for the orientation of spheroids settling in turbulent flow. J. Fluid Mech. 886, A9.CrossRefGoogle Scholar
Siewert, C., Kunnen, R.P.J., Meinke, M. & Schröder, W. 2014 a Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.CrossRefGoogle Scholar
Siewert, C., Kunnen, R.P.J. & Schröder, W. 2014 b Collision rates of small ellipsoids settling in turbulence. J. Fluid Mech. 758, 686701.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.CrossRefGoogle Scholar
Yeung, P.-K. & Pope, S. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Yeung, P.-K., Pope, S., Lamorgese, A. & Donzis, D. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18 (6), 065103.CrossRefGoogle Scholar
Zhang, H., Ahmadi, G., Fan, F.G. & McLaughlin, J.B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27 (6), 9711009.CrossRefGoogle Scholar
Zhao, L., Challabotla, N., Andersson, H. & Variano, E. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. lett. 115 (24), 244501.CrossRefGoogle ScholarPubMed