Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-20T22:39:37.167Z Has data issue: false hasContentIssue false

Covariable changes of septal spacing and conch shape during early ontogeny: a common characteristic between Perisphinctina and Ancyloceratina (Ammonoidea, Cephalopoda)

Published online by Cambridge University Press:  15 March 2024

Yutaro Nishino
Affiliation:
Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan , , ,
Keisuke Komazaki
Affiliation:
Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan , , ,
Masaki Arai
Affiliation:
Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan , , ,
Ai Hattori
Affiliation:
College of Urban Science, Yokohama National University, Yokohama 240-8501, Japan
Yuji Uoya
Affiliation:
College of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
Takahiro Iida
Affiliation:
Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan , , ,
Ryoji Wani*
Affiliation:
Faculty of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
*
*Corresponding author

Abstract

We analyzed the ontogenetic trajectories of conch morphology and septal spacing between successive chambers in Cretaceous ammonoids (suborders Perisphinctina and Ancyloceratina) collected from southern India, Madagascar, and Japan. All examined species, except for the family Collignoniceratidae, exhibited similar characteristics during early ontogeny. The common ontogenetic trajectories of septal spacing show a cycle comprising an increase and a subsequent decrease in septal spacing during early ontogeny. The conch diameters at the end of the cycle were estimated to be 1–4 mm. The conch shape (aperture height and whorl expansion rate) covariably changed at this conch diameter. Such covariable changes are commonly recognized in the suborders Perisphinctina and Ancyloceratina. The similarity in the ontogenetic trajectories of conch morphology implies a closer phylogenetic relationship between these suborders compared to Lytoceratina or Phylloceratina.

Type
Articles
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, K., and Wani, R., 2012, Variable growth modes in Late Cretaceous ammonoids: implications for diverse early life histories: Journal of Paleontology, v. 86, p. 258267.CrossRefGoogle Scholar
Arkell, W.J., Furnish, W.M., Kummel, B., Miller, A.K., Moore, R.C., Schindewolf, O.H., Sylvester-Bradley, P.C., and Wright, C.W., 1957, Treatise on Invertebrate Paleontology. Part. L. Mollusca 4, Cephalopoda Ammonoidea: Boulder, Colorado and Lawrence, Kansas, Geological Society of America and University of Kansas Press, 490 p.Google Scholar
Ayyasami, K., 2006, Role of oysters in biostratigraphy: a case study from the Cretaceous of the Ariyalur area, southern India: Geosciences Journal, v. 10, p. 237247.CrossRefGoogle Scholar
Besairie, H., 1972, Géologie de Madagascar. I. Les Terrains sédimentaires: Annales Geologiques de Madagascar, v. 35, 465 p.Google Scholar
Besse, J., and Courtillot, V., 1988, Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic: Journal of Geophysical Research, v. 93, p. 1179111808.CrossRefGoogle Scholar
Bessenova, N.V., and Mikhailova, I.A., 1991, Higher taxa of Jurassic and Cretaceous Ammonitida: Paleontological Journal, v. 25, p. 119.Google Scholar
Blanford, H.F., 1862, On the Cretaceous and other rocks of the South Arcot and Trichinopoly districts, Madras: Memoirs of the Geological Survey of India, v. 4, p. 1217.Google Scholar
Breistroffer, M., 1933, Etude sur l’étage Albien dans le massif de la Chartreuse (Isère et Savoie): Travaux du Laboratoire de Géologie de l'Université de Grenoble, v. 17, p. 187236.Google Scholar
Bucher, H., Landman, N.H., Guex, J., and Klofak, S.M., 1996, Mode and rate of growth in ammonoids, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 407461.CrossRefGoogle Scholar
Callomon, J.H., 1955, The ammonite succession in the Lower Oxford Clay and Kellaway beds at Kidlington, Oxfordshire, and the zones of the Callovian Stage: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, v. 239, p. 215264.Google Scholar
Callomon, J.H., 1963, Sexual dimorphism in Jurassic ammonites: Transactions of the Leicester Literary and Philosophical Society, v. 57, p. 2156.Google Scholar
Checa, A., and Sandoval, J., 1989, Septal retraction in Jurassic Ammonitina: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 4, p. 193211.CrossRefGoogle Scholar
Collignon, M., 1949, Recherches sur les faunes Albiennes de Madagascar. I. l'Albien d'Ambarimaninga: Annales Géologiques de Service des Mines, v. 16, p. 1128.Google Scholar
Collignon, M., 1963, Atlas des Fossiles Caractéristiques de Madagascar (Ammonites), Fascicule X (Albien): Antananarivo, Madagascar, Service Géologique, 186 p.Google Scholar
Crick, R.E., 1978, Morphological variations in the ammonite Scaphites of the Blue Hill Member, Carlile Shale, Upper Cretaceous, Kansas: University of Kansas Paleontological Contributions, v. 88, p. 128.Google Scholar
Davis, R.A., Landman, N.H., Dommergues, J.-L., Marchand, D., and Bucher, H., 1996, Mature modifications and dimorphism in ammonoid cephalopods, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 463539.CrossRefGoogle Scholar
De Baets, K., Klug, C., Korn, D., and Landman, N.H., 2012, Early evolutionary trends in ammonoid embryonic development: Evolution, v. 66, p. 17881806.CrossRefGoogle ScholarPubMed
De Baets, K., Klug, C., Korn, D., Bartels, C., and Poschmann, M., 2013, Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, western Germany): Palaeontographica A, v. 299, p. 1113.CrossRefGoogle Scholar
De Baets, K., Landman, N.H., and Tanabe, K., 2015a, Ammonoid embryonic development, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 113205.CrossRefGoogle Scholar
De Baets, K., Bert, D., Hoffmann, R., Monnet, C., Yacobucci, M.M., and Klug, C., 2015b, Ammonoid intraspecific variability, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 259426.Google Scholar
Donovan, D.T., Callomon, J.H., and Howarth, M.K., 1981, Classification of the Jurassic Ammonitina, in House, M.R., and Senior, J.R., eds., The Ammonoidea: The Evolution, Classification, Mode of Life, and Geological Usefulness of a Major Fossil Group: Systematics Association Special Volume 18, p. 101155.Google Scholar
Drushchits, V.V., and Khiami, N., 1970, Structure of the septa, protoconch walls and initial whorls in Early Cretaceous ammonites: Paleontological Journal, v. 4, p. 2638.Google Scholar
Drushchits, V.V., Doguzhayeva, L.A., and Mikhaylova, I.A., 1977, The structure of the ammonitella and the direct development of ammonites: Paleontological Journal, v. 11, p. 188199.Google Scholar
Harada, K., and Tanabe, K., 2005, Paedomorphosis in the Turonian (Late Cretaceous) collignoniceratine ammonite lineage from the North Pacific region: Lethaia, v. 38, p. 4757.CrossRefGoogle Scholar
Hayami, I., and Matsukuma, A., 1970, Variation of bivariate characters from the standpoint of allometry: Palaeontology, v. 13, p. 588605.Google Scholar
Hayasaka, I., and Fukada, A., 1951, On the ontogeny of Barroisiceras minimum Yabe from the upper ammonite bed in Hokkaido: Journal of the Faculty of Science, Hokkaido University, v. 7, p. 324330.Google Scholar
Hoffmann, R., Lemanis, R., Naglik, C., and Klug, C., 2015, Ammonoid buoyancy, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 613648.CrossRefGoogle Scholar
Hoffmann, R., Lemanis, R.E., Falkenberg, J., Schneider, S., Wesendonk, H., and Zachow, S., 2018, Integrating 2D and 3D shell morphology to disentangle the palaeobiology of ammonoids: a virtual approach: Palaeontology, v. 61, p. 89104.CrossRefGoogle Scholar
Hoffmann, R., Riechelmann, S., Ritterbush, K.A., Koelen, J., Lübke, N., Joachimski, M.M., Lehmann, J., and Immenhauser, A., 2019, A novel multiproxy approach to reconstruct the paleoecology of extinct cephalopods: Gondwana Research, v. 67, p. 6481.CrossRefGoogle Scholar
Hoffmann, R., Slattery, J.S., Kruta, I., Linzmeier, B.J., Lemanis, R.E., Mironenko, A., Goolaerts, S., De Baets, K., Peterman, D.J., and Klug, C., 2021, Recent advances in heteromorph ammonoid palaeobiology: Biological Reviews, v. 96, p. 576610.CrossRefGoogle ScholarPubMed
Iwasaki, T., Iwasaki, Y., and Wani, R., 2020, Polymorphism in Late Cretaceous phylloceratid ammonoids: evidence from ontogenetic trajectories of septal spacing: Papers in Palaeontology, v. 6, p. 155172.CrossRefGoogle Scholar
Jacob, C., 1907, Etudes paléontologiques et stratigraphiques sur la partie moyenne des terrains Crétacés dans les Alpes Françaises et les régions voisines: Annales de l'Université de Grenoble, v. 19, p. 221534.Google Scholar
Jacobs, D.K., and Chamberlain, J.A. Jr., 1996, Buoyancy and hydrodynamics in ammonoids, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 169224.CrossRefGoogle Scholar
Jimbo, K., 1894, Beiträge zur Kenntnis der fauna der Kreideformation von Hokkaido: Palaeontologische Abhandlungen (n. ser.), v. 2 [3], p. 148 [p. 147–194].Google Scholar
Kawakami, Y., and Wani, R., 2023, Stepwise growth changes in early post-embryonic stages among Cretaceous tetragonitid ammonoids: Paläontologische Zeitschrift, v. 97, p. 469483.CrossRefGoogle Scholar
Kawakami, Y., Uchida, N., and Wani, R., 2022, Ontogenetic trajectories of septal spacing and conch shape in the Late Cretaceous gaudryceratid ammonoids: implications for their post-embryonic palaeoecology: Palaeontology, v. 65, e12587, https://doi.org/10.1111/pala.12587.CrossRefGoogle Scholar
Kermack, K.A., and Haldane, J.B.S., 1950, Organic correlation and allometry: Biometrika, v. 37, p. 3041.CrossRefGoogle ScholarPubMed
Klug, C., 2001, Life-cycles of Emsian and Eifelian ammonoids (Devonian): Lethaia, v, 34, p. 215233.Google Scholar
Klug, C., 2004, Mature modifications, the black band, the black aperture, the black stripe, and the periostracum in cephalopods from the Upper Muschelkalk (Middle Triassic, Germany): Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, v. 88, p. 6378.Google Scholar
Klug, C., and Hoffmann, R., 2015, Ammonoid septa and sutures, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 4590.CrossRefGoogle Scholar
Klug, C., Brühwiler, T., Korn, D., Schweigert, G., Brayard, A., and Tilsley, J., 2007, Ammonoid shell structures of primary organic composition: Palaeontology, v. 50, p. 14631478.CrossRefGoogle Scholar
Klug, C., Korn, D., Landman, N.H., Tanabe, K., De Baets, K., and Naglik, C., 2015, Describing ammonoid conchs, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 324.CrossRefGoogle Scholar
Kossmat, F., 1895–1898, Untersuchungen über die Südindische Kreideformation: Beiträge zur Paläontologie Österreich–Ungarns und des Orients, v. 9, p. 97203; v. 11, p. 1–46, 89–152.Google Scholar
Kulicki, C., 1974, Remarks on the embryogeny and postembryonal development of ammonites: Acta Palaeontologica Polonica, v. 19, p. 201224.Google Scholar
Kulicki, C., 1979, The ammonite shell: its structure, development and biological significance: Palaeontologia Polonica, v. 39, p. 97142.Google Scholar
Kulicki, C., 1996, Ammonoid shell microstructure, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 65101.CrossRefGoogle Scholar
Landman, N.H., 1985, Preserved ammonitellas of Scaphites (Ammonoidea, Ancyloceratina): American Museum Novitates, v. 2815, p. 110.Google Scholar
Landman, N.H., 1987, Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: systematics, developmental patterns and life history: Bulletin of American Museum of National History, v. 185, p. 118241.Google Scholar
Landman, N.H., 1988, Early ontogeny of Mesozoic ammonites and nautilids, in Wiedmann, J., and Kullmann, J., eds., Cephalopods, Present and Past: Stuttgart, Germany, Schweizerbart'sche Verlagsbuchhandlung, p. 215228.Google Scholar
Landman, N.H., and Waage, K.H., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming: Bulletin of the American Museum of Natural History, v. 215, p. 1257.Google Scholar
Landman, N.H., Tanabe, K., and Shigeta, Y., 1996, Ammonoid embryonic development, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 343405.CrossRefGoogle Scholar
Landman, N.H., Machalski, M., and Whalen, C.D., 2021. The concept of ‘heteromorph ammonoids’: Lethaia, v. 54, p. 595602, https://doi.org/10.1111/let.12443.CrossRefGoogle Scholar
Lécuyer, C., and Bucher, H., 2006, Stable isotope compositions of a Late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere?: eEarth, v. 1, https://doi.org/10.5194/ee-1-1-2006.CrossRefGoogle Scholar
Lehmann, J., 2015, Ammonite biostratigraphy of the Cretaceous—an overview, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Macroevolution to Paleogeography: Amsterdam, Springer, p. 403429.CrossRefGoogle Scholar
Lemanis, R., Korn, D., Zachow, S., Rybacki, E., and Hoffmann, R., 2016, The evolution and development of cephalopod chambers and their shape: PLoS ONE, v. 11, p. e0151404, https://doi.org/10.1371/journal.pone.0151404.CrossRefGoogle Scholar
Lemanis, R., Zachow, S., Fusseis, F., and Hoffmann, R., 2015, A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells: Paleobiology, v. 41, p. 313329.CrossRefGoogle Scholar
Linzmeier, B.J., Landman, N.H., Peters, S.E., Kozdon, R., Kitajima, K., and Valley, J.W., 2018, Ion microprobe-measured stable isotope evidence for ammonite habitat and life mode during early ontogeny: Paleobiology, v. 44, p. 684708.CrossRefGoogle Scholar
Lukeneder, A., 2015, Ammonoid habitats and life history, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 689791.CrossRefGoogle Scholar
Lukeneder, A., Harzhauser, M., Müllegger, S., and Piller, W.E., 2010, Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C): Earth and Planetary Science Letters, v. 296, p. 103114.CrossRefGoogle Scholar
Machalski, M., Jagt, J.W.M., Landman, N.H., and Motchurova-Dekova, N., 2007, The highest records of North American scaphitid ammonites in the European Maastrichtian (Upper Cretaceous) and their stratigraphic implications: Acta Geologica Polonica, v. 57, p. 169185.Google Scholar
Machalski, M., Owocki, K., Dubicka, Z., Malchyk, O., and Wierny, W., 2021, Stable isotopes and predation marks shed new light on ammonoid habitat depth preferences: Scientific Reports, v. 11, 22730, https://doi.org/10.1038/s41598-021-02236-9.CrossRefGoogle ScholarPubMed
Mapes, R.H., and Nützel, A., 2009, Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology: Lethaia, v. 42, p. 341356.CrossRefGoogle Scholar
Matsumoto, T., 1942, A note on the Japanese Cretaceous ammonites belonging to the subfamily Desmoceratinae: Proceedings of the Imperial Academy of Japan, v. 18, p. 2429.CrossRefGoogle Scholar
Matsumoto, T., 1954, Selected Cretaceous leading ammonites in Hokkaido and Saghalin, in Matsumoto, T., ed., Cretaceous System in the Japanese Islands: Tokyo, The Japanese Society for the Promotion of Science, v. 14, p. 242313.Google Scholar
Mignot, Y., 1993, Un problem de paléobiologie chez les ammonoïdés (Cephalopoda). Croissance et miniaturisation en liaison avec les environnements: Documents des Laboratoires de Géologie, Lyon, v. 124, p. 1113.Google Scholar
Mikhailova, I.A., and Baraboshkin, E.Y., 2009, The evolution of the hetermorph and monomorph Early Cretaceous ammonites of the suborder Ancyloceratina Wiedmann: Paleontological Journal, v. 43, p. 527536.CrossRefGoogle Scholar
Moriya, K., 2015a, Isotope signature of ammonoid shells, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 793836.CrossRefGoogle Scholar
Moriya, K., 2015b, Evolution of habitat depth in the Jurassic–Cretaceous ammonoids: Proceedings of the National Academy of Sciences, v. 112, p. 1554015541, https://doi.org/10.1073/pnas.1520961112.CrossRefGoogle ScholarPubMed
Moriya, K., Nishi, H. Kawahata, H. Tanabe, , K., and Takayanagi, Y., 2003, Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure: Geology, v. 31, p. 167170.2.0.CO;2>CrossRefGoogle Scholar
Naglik, C., Tajika, A., Chamberlain, J., and Klug, C., 2015, Ammonoid locomotion, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Anatomy to Ecology: Amsterdam, Springer, p. 649688.CrossRefGoogle Scholar
Owen, D.D., 1852, Description of new and imperfectly known genera and species of organic remains, collected during the geological surveys of Wisconsin, Iowa, and Minnesota: Report of a geological survey of Wisconsin, Iowa, and Minnesota; and incidentally of a portion of Nebraska Territory: Philadelphia, Lippincott, Grambo & co, 638 p.Google Scholar
Page, K.N., 1996, Mesozoic ammonoids in space and time, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 755794.CrossRefGoogle Scholar
Peterman, D.J., and Barton, C.C., 2019, Power scaling of ammonitic suture patterns from Cretaceous Ancyloceratina: constraints on septal/sutural complexity: Lethaia, v. 52, p. 7790.Google Scholar
Ritterbush, K.A., Hoffmann, R., Lukeneder, A., and De Baets, K., 2014, Pelagic palaeoecology: the importance of recent constraints on ammonoids palaeobiology and life history: Journal of Zoology, v. 292, p. 229241.CrossRefGoogle Scholar
Rouget, I., and Neige, P., 2001, Embryonic ammonoid shell features: intraspecific variation revised: Palaeontology, v. 44, p. 5364.CrossRefGoogle Scholar
Sessa, J.A., Larina, E., Knoll, K., Garb, M., Cochran, J.K., Huber, B.T., Macleod, K.G., and Landman, N.H., 2015, Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms: Proceedings of the National Academy of Sciences, v. 112, p. 1556215567, https://doi.org/10.1073/pnas.1507554112.CrossRefGoogle ScholarPubMed
Shigeta, Y., 1993, Post-hatching early life history of Cretaceous Ammonoidea: Lethaia, v. 26, p. 133145.CrossRefGoogle Scholar
Shigeta, Y., Zakharov, Y.D., and Mapes, R.H., 2001, Origin of the Ceratitida (Ammonoidea) inferred from the early internal shell features: Paleontological Research, v. 5, p. 201213.Google Scholar
Shimizu, S., 1934, (Taxonomy of Phylloceratinae), in Shimizu, S., and Obata, T., eds., Cephalopoda. Iwanami's Lecture Series of Geology & Palaeontology: Tokyo, Iwanami Shoten, p. 1137. [in Japanese]Google Scholar
Sundaram, R., Henderson, R.A., Ayyasami, K., and Stilwekk, J.D., 2001, A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India: Cretaceous Research, v. 22, p. 743762.CrossRefGoogle Scholar
Tajika, A., and Klug, C., 2020, How many ontogenetic points are needed to accurately describe the ontogeny of a cephalopod conch? A case study of the modern nautilid Nautilus pompilius: PeerJ, 8:e8849, http://doi.org/10.7717/peerj.8849.CrossRefGoogle ScholarPubMed
Tajika, A., and Wani, R., 2011, Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage: Lethaia, v. 44, p. 287298.CrossRefGoogle Scholar
Tajika, A., Morimoto, N., Wani, R., Naglik, C., and Klug, C., 2015, Intraspecific variation of phragmocone chamber volumes throughout ontogeny in the modern nautilid Nautilus and the Jurassic ammonite Normannites: PeerJ, v. 3, e1306, https://doi.org/10.7717/peerj.1306.CrossRefGoogle ScholarPubMed
Takai, F., Matsukuma, S., Hirose, K., Yamazaki, T., Aiba, D., and Wani, R., 2022, Conservative ontogenetic trajectories of septal spacing during the post-embryonic stage in Cretaceous ammonoids of the subfamily Desmoceratinae: Lethaia, v. 55, p. 112, https://doi.org/10.18261/let.55.2.2.CrossRefGoogle Scholar
Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites: Memoirs of the Faculty of Science, Kyusyu University, Series D, Geology, v. 23, p. 367407.CrossRefGoogle Scholar
Tanabe, K., 2022. Late Cretaceous dimorphic scaphitid ammonoid genus Yezoites from the circum-North Pacific regions: Paleontological Research, v. 26, p. 233269.CrossRefGoogle Scholar
Tanabe, K., and Ohtsuka, Y., 1985, Ammonoid early internal shell structure: its bearing on early life history: Paleobiology, v. 11, p. 310322CrossRefGoogle Scholar
Tanabe, K., Obata, I., and Futakami, M., 1978, Analysis of ammonoid assemblages in the upper Turonian of the Manji Area, central Hokkaido: Bulletin of the National Science Museum, Series C, Geology & Paleontology, v. 4, p. 3762.Google Scholar
Tanabe, K., Fukuda, Y., and Obata, I., 1980, Ontogenetic development and functional morphology in the early growth stages of three Cretaceous ammonites: Bulletin of National Science Museum, Series C, v. 6, p. 926.Google Scholar
Tanabe, K., Landman, N.H., Mapes, R.H., and Faulkner, C.J., 1993, Analysis of a Carboniferous embryonic ammonoid assemblage from Kansas, U.S.A.—implications for ammonoid embryology: Lethaia, v. 26, p. 215224.CrossRefGoogle Scholar
Tanabe, K., Kulicki, C., Landman, N.H., and Mapes, R.H., 2001, External shell features of embryonic and early postembryonic shells of a Carboniferous goniatite Vidrioceras from Kansas: Paleontological Research, v. 5, p. 1319.Google Scholar
Tanabe, K., Landman, N.H., and Yoshioka, Y., 2003, Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids: Journal of Paleontology, v. 77, p. 876887.CrossRefGoogle Scholar
Westermann, G.E.G., 1958, The significance of septa and sutures in Jurassic ammonite systematics: Geological Magazine, v. 95, p. 441455.CrossRefGoogle Scholar
Westermann, G.E.G., 1996. Ammonoid life and habitat, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 607707.CrossRefGoogle Scholar
Wiedmann, J., 1966, Stammesgeschichte und System der posttriadischen Ammonoideen: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 125, p. 4979.Google Scholar
Wiedmann, J., 1969, The heteromorphs and ammonoid extinction: Biological Reviews, v. 44, p. 563602.CrossRefGoogle Scholar
Wright, C.W., Callomon, J.H., and Howarth, M.K., 1996, Treatise on Invertebrate Paleontology. Part. L. Mollusca 4. Revised: Lawrence, Kansas, Geological Society of America and University of Kansas Press, 362 p.Google Scholar
Yabe, H., 1910, Die Scaphiten aus der Oberkreide von Hokkaido: Beiträge zur Paläontologie Österreich–Ungarns und des Orients, v. 23, p. 159174.Google Scholar
Yacobucci, M.M., 2015, Macroevolution and paleobiogeography of Jurassic–Cretaceous ammonoids, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: From Macroevolution to Paleogeography: Amsterdam, Springer, p. 189228.CrossRefGoogle Scholar
Yahada, H., and Wani, R., 2013, Limited migration of scaphitid ammonoids: evidence from the analyses of shell whorls: Journal of Paleontology, v. 87, p. 406412.CrossRefGoogle Scholar
Zell, H., Zell, I., and Winter, S., 1979, Das Gehäusewachstum der Ammonitengattung Amaltheus De Montfort wäahrend der frühontogenetischen Entwicklung: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 10, p. 631640.Google Scholar