Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-20T15:14:16.125Z Has data issue: false hasContentIssue false

Early Miocene shallow-water corals from La Guajira, Colombia: Part II, Mussidae–Siderastreidae and Milleporidae

Published online by Cambridge University Press:  28 December 2018

Paola Flórez
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Campus Fuentenueva s/n 18002 Granada, Spain Corporación Geológica ARES, Calle 44A No. 53-96 Bogotá, Colombia
Paula Zapata-Ramírez
Affiliation:
Corporación Geológica ARES, Calle 44A No. 53-96 Bogotá, Colombia Escuela de Ingeniería, Grupo de Automática y Diseño A+D, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
James S. Klaus
Affiliation:
Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33146, USA

Abstract

In this contribution we describe and illustrate 14 coral morphospecies collected from the early Miocene Siamaná (Aquitanian–Burdigalian) and Jimol (late Burdigalian) formations of the Cocinetas Basin in La Guajira Peninsula, northern Colombia. Eleven were identified as already established species including seven genera belonging to the families Mussidae, Pocilloporidae, Poritidae, Siderastreidae, and Milleporidae; the other three remain in open nomenclature. Nine of the 11 species identified (81%) are extinct. The remaining two living species, Siderastrea siderea and Millepora alcicornis, are common on modern Caribbean reefs. Their presence in the Siamaná Formation extends their temporal range in the Caribbean region to the early Miocene. Most of the taxa described here were hermatypic and zooxanthellate corals of the order Scleractinia, with the exception of the fire coral Millepora alcicornis, of the order Anthothecata, family Milleporidae. The coral fauna recorded in the Siamaná and Jimol formations is typical of shallow and calm waters of the Oligocene–Miocene transition.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmon, W.D., 2001, Nutrients, temperature, disturbance, and evolution: a model for the late Cenozoic marine record of the western Atlantic: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 166, p. 926.Google Scholar
Amaral, F.M.D., Steiner, A.Q., Broadhurst, M.K., and Cairns, S.D., 2008, An overview of the shallow-water calcified hydroids from Brazil (Hydrozoa: Cnidaria), including the description of a new species: Zootaxa, v. 1930, p. 5668.Google Scholar
Apstein, C., 1915, Nomina conservanda: Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, v. 5, p. 119202.Google Scholar
Baron-Szabo, R.C., Schafhauser, A., Götz, S., and Stinnesbeck, W., 2006, Scleractinian corals from the Cardenas Formation (Maastrichtian), San Luis Potosi, Mexico: Journal of Paleontology, v. 80, p. 10331046.Google Scholar
Blainville, H.M.D., 1830, Zoophytes, in Levrault, F.G., ed., Dictionnaire des Sciences Naturelles, dans lequel on Traité Méthodiquement des Differéns êtres de la Nature, Considérés Soit en Eux-mêmes, d'après l’état Actuel de nos Connoissances, soit Relativement a l'utlité qu'en Peuvent Retirer la Médicine, l'agriculture, le Commerce et les Arts, Tome 60: Paris, Le Normat, p. 1548.Google Scholar
Blainville, H.M.D., 1834, Manuel d'actinologie ou de Zoophytologie: Paris, Levrault, 694 p.Google Scholar
Boschma, H., 1948, The species problem in Millepora: Zoologische Verhandelingen, v. 1, 115 p.Google Scholar
Bourne, G.C., 1900, The Anthozoa, in Lankester, E.R., ed. A Treatise on Zoology. Part II. The Porifera and Coelenterata: London, Adam and Charles Black, p. 184.Google Scholar
Braga, J.C., Martín, J.M., and Alcala, B., 1990, Coral reefs in coarse-terrigenous sedimentary environments (upper Tortonian, Granada Basin, southern Spain): Sedimentary Geology, v. 66, p. 135150.Google Scholar
Bromfield, K., 2013, Neogene corals from the Indo-Pacific: Indonesia, Papua New Guinea, and Fiji: Bulletins of American Paleontology, v. 387, p. 160.Google Scholar
Budd, A.F., 2000, Diversity and extinction in the Cenozoic history of Caribbean reefs: Coral Reefs, v. 19, p. 2535.Google Scholar
Budd, A.F., and McNeill, D.F., 1998, Zooxanthellate scleractinian corals of the Bowden shell bed, southeast Jamaica: Contributions to Tertiary and Quaternary Geology, v. 35, p. 4761.Google Scholar
Budd, A.F., and Stolarski, J., 2009, Searching for new morphological characters in the systematics of scleractinian reef corals: Comparison of septal teeth and granules between Atlantic and Pacific Mussidae: Acta Zoolgica, v. 90, p. 142165.Google Scholar
Budd, A.F., and Stolarski, J., 2011, Corallite wall and septal microstructure in scleractinian reef corals: Comparison of molecular clades within the family Faviidae: Journal of Morphology, v. 272, p. 6688.Google Scholar
Budd, A.F., Johnson, K.G., and Edwards, J.C., 1989, Miocene coral assemblages in Anguilla, B.W.I., and their implications for the interpretation of vertical succession on fossil reefs: Palaios, v. 4, p. 264275.Google Scholar
Budd, A.F., Stemann, T.A., and Stewart, R.H., 1992, Eocene Caribbean reef corals: A unique fauna from the Gatuncillo Formation of Panama: Journal of Paleontology, v. 66, p. 570594.Google Scholar
Budd, A.F., Stemann, T.A., and Johnson, K.G., 1994, Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals: Journal of Paleontology, v. 68, p. 951977.Google Scholar
Budd, A.F., Johnson, K.G., and Edwards, J.C., 1995, Caribbean reef coral diversity during the early to middle Miocene: An example from the Anguilla Formation: Coral Reefs, v. 14, p. 109117.Google Scholar
Budd, A.F., Petersen, R.A., and McNeill, D.F., 1998, Stepwise faunal change during evolutionary turnover: A case study from the Neogene of Curaçao, Netherlands Antilles: Palaios, v. 13, p. 167185.Google Scholar
Budd, A.F., Johnson, K.G., Stemann, T.A., and Tompkins, B.H., 1999, Pliocene to Pleistocene reef coral assemblages in the Limon Group of Costa Rica: Bulletins of American Paleontology, v. 357, p. 119158.Google Scholar
Budd, A.F., Klaus, J.S., and Johnson, K.G., 2011, Cenozoic diversification and extinction patterns in Caribbean reef corals: A review: Paleontological Society Papers, v. 17, p. 7993.Google Scholar
Budd, A.F., Fukami, H., Smith, N.D., and Knowlton, N., 2012, Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia): Zoological Journal of the Linnean Society, v. 166, p. 465529.Google Scholar
Calder, D.R., 1988, Shallow-water hydroids of Bermuda. The Athecatae: Royal Ontario Museum Life Sciences Contributions, v. 148, p. 1107.Google Scholar
Carrillo-Briceño, J.D., Argyriou, T., Zapata, V., Kindlimann, R., and Jaramillo, C., 2016, A new early Miocene (Aquitanian) Elasmobranchii assemblage from the La Guajira Peninsula, Colombia: Ameghiniana, v. 53, p. 7799.Google Scholar
Cornelius, P.F.S., 1992, Medusa loss in leptolid hydrozoan (Cnidaria) hydroid rafting, and abbreviated life-cycles among their remote-island faunae: An interim review, in Bouillon, J., Boero, F., Cicogna, F., Gili, J.M., and Hughes, R.G., eds., Aspects of Hydrozoan Biology: Scientia Marina, v. 56, p. 245261.Google Scholar
Coryell, H.N., and Ohlsen, V., 1929, Fossil corals of Porto Rico, with descriptions also of a few Recent species: Scientific Survey of Porto Rico and the Virgin Islands, New York Academy of Sciences, v. 3, p. 167–236.Google Scholar
Dana, J. D., 1859, Synopsis of the report on Zoophytes of the United States Exploring Expedition around the world, under C. Wilkes, U.S.N. commander, in the years 1838–1842: New Haven, published by the author, 172 p.Google Scholar
Díaz, J.M., Barrios, L.M., Cendales, M.H., Garzón-Ferreira, J., Geister, J., López-Victoria, M., Ospina, G.H., Parra-Valencia, F., Pinzón, J., Vargas-Ángel, B., Zapata, F.A., and Zea, S., 2000, Áreas Coralinas de Colombia: Serie de Publicaciones Especiales Invemar, No. 5, 176 p.Google Scholar
Duncan, P.M., 1863, On the fossil corals of the West Indian Islands, Part I: Proceedings of the Geological Society, Quarterly Journal of the Geological Society of London, v. 19, p. 406458.Google Scholar
Duncan, P.M., 1864, On the fossil corals of the West Indian Islands, Part II: Proceedings of the Geological Society, Quarterly Journal of the Geological Society of London, v. 20, p. 2045.Google Scholar
Duncan, P.M., and Wall, G.P., 1865, A notice of the geology of Jamaica, especially with reference to the district of Clarendon; with descriptions of the Cretaceous, Eocene, and Miocene Corals of the islands: Proceedings of the Geological Society, Quarterly Journal of the Geological Society of London, v. 21, p. 115.Google Scholar
Edinger, E.N., and Risk, M.J., 1994, Oligocene-Miocene extinction and geographic restriction of Caribbean corals: Roles of turbidity, temperature, and nutrients: Palaios, v. 9, p. 576598.Google Scholar
Ehrenberg, C.G., 1834, Beiträge zur Physiologischen Kenntniss der Corallenthiere im Allgemeinen, und Besonders des Rothen Meeres, nebst einem Versuche zur Physiologischen Systematik Derselben, v. 1: Berlin, Abhandlungen der Königlichen Akademie der Wissenschaften, 156 p.Google Scholar
Ellis, J., and Solander, D., 1786, The Natural History of Many Curious and Uncommon Zoophytes Collected From Various Parts of the Globe: London, Benjamin White and Son; and Peter Elmsly, 206 p.Google Scholar
Esper, E.J.C., 1797, Fortsetzungen der Pflanzenthiere in Abbildungen nach der Natur: Mit Farben Erleuchtet Nebst Beschreibungen. Erster Theil, v. 3: Nürnberg, Raspischen Buchhandlung, 230 p.Google Scholar
Fleming, J., 1828, A History of British Animals, Exhibiting the Descriptive Characters and Systematical Arrangement of the Genera and Species of Quadrupeds, Birds, Reptiles, Fishes, Mollusca, and Radiata of the United Kingdom: Edinburgh, Bell and Bradfute, 565 p.Google Scholar
Flórez, P., Zaptata-Ramírez, P., and Klaus, J.S., 2018 (online publication), Early Miocene shallow-water corals from La Guajira, Colombia: Part I (Acroporidae–Montastraeidae): Journal of Paleontology, p. 124. doi:10.1017/jpa.2018.45.Google Scholar
Foster, A.B., 1980, Ecology and morphology of the Caribbean Mio-Pliocene reef-coral Siderastrea: Acta Paleontologica Polonica, v. 25, p. 439450.Google Scholar
Foster, A.B., 1986, Neogene paleontology in the northern Dominican Republic. 3. The Family Poritidae (Anthozoa: Scleractinia): Bulletin of American Paleontology, v. 90, p. 1123.Google Scholar
Frost, S.H., and Langenheim, R.L., 1974, Cenozoic Reef Biofacies, Tertiary Larger Foraminifera and Scleractinian Corals from Chiapas, Mexico: DeKalb, Northern Illinois University Press, 388 p.Google Scholar
Frost, S.H., and Schafersman, S., 1978, Oligocene reef community succession, Damon Mound, Texas: Gulf Coast Association of Geological Societies, Transactions, v. 28, p. 143160.Google Scholar
Frost, S.H., Harbour, J.L., Beach, D.K., Realini, M.J., and Harris, P.M., 1983, Oligocene reef tract development, southwestern Puerto Rico: Sedimenta IX, University of Miami, 144 p.Google Scholar
Fukami, H., Budd, A.F., Paulay, G., Solé-Cava, A., Chen, C.A., Iwao, K., and Knowlton, N., 2004, Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals: Nature, v. 427, p. 832835.Google Scholar
Geister, J., 1975, Riffbau und geologische Entwicklungsgeschichte der Insel San Andrés (westliches Karibisches Meer, Kolumbien): Stuttgarter Beiträge zur Naturkunde, Serie B, v. 15, p. 1203.Google Scholar
Geister, J., 1983, Holozäne westindische Korallenriffe: Geomorphologie, Okologie und Fazies: Facies, v. 9, p. 173284.Google Scholar
Geister, J., 1992, Modern reef development and Cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western Caribbean Sea, Colombia): Facies, v. 27, p. 170.Google Scholar
Goreau, T.F., 1959, The ecology of Jamaican coral reefs. I. Species composition and zonation: Ecology, v. 40, p. 6790.Google Scholar
Gray, J.E., 1840, South rooms of the north gallery: Synopsis of the contents of the British Museum, v. 41, p. 5484.Google Scholar
Haeckel, E., 1896, Systematische Phylogenie. Entwurf eines Natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte, v. 2: Berlin, Georg Reimer, 750 p.Google Scholar
Hendy, A.J.W., Jones, D.S., Moreno, F., Zapata, V., and Jaramillo, C., 2015, Neogene molluscs, shallow-marine paleoenvironments and chronostratigraphy of the Guajira Peninsula, Colombia: Swiss Journal of Paleontology, v. 134, p. 4575.Google Scholar
Hoorn, C., Guerrero, J., Sarmiento, G.A., and Lorente, M.A., 1995, Andean tectonics as a cause for changing drainage patterns in Miocene northern South America: Geology, v. 23, p. 237240.Google Scholar
Iturralde-Vinent, M.A., 2006, Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region: International Geology Review, v. 48, p. 791827.Google Scholar
Iturralde-Vinent, M.A., and MacPhee, R.D.E., 1999, Paleogeography of the Caribbean region: Implications for Cenozoic biogeography: Bulletin of the American Museum of Natural History, v. 238, p. 195.Google Scholar
Jackson, J.B.C., Budd, A.F., and Pandolfi, J.M., 1996, The shifting balance of natural communities, in Jablonski, D., Erwin, D.H., and Lipps, J.H., eds., Evolutionary Paleobiology: Essays in Honor of James W. Valentine: Chicago, University of Chicago Press, p. 89122.Google Scholar
Johnson, K.G., 2001, Middle Miocene recovery of Caribbean reef corals: New data from the Tamana Formation, Trinidad: Journal of Paleontology, v. 75, p. 513526.Google Scholar
Johnson, K.G., 2007, Reef-coral diversity in the late Oligocene Antigua Formation and temporal variation of local diversity on Caribbean Cenozoic reefs, in Hubmann, B., and Piller, W.E., eds., Fossil Corals and Sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera: Österreichischen Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommissionen, v. 17, p. 471491.Google Scholar
Johnson, K.G., and Kirby, M.X., 2006, The Emperador Limestone rediscovered: Early Miocene corals from the Culebra Formation, Panama: Journal of Paleontology, v. 80, p. 283293.Google Scholar
Johnson, K.G., Jackson, J.B.C., and Budd, A.F., 2008, Caribbean reef development was independent of coral diversity over 28 million years: Science, v. 319, p. 15211523.Google Scholar
Johnson, K.G., Sánchez-Villagra, M.R., and Aguilera, O.A., 2009, The Oligocene-Miocene transition on coral reefs in the Falcón Basin (NW Venezuela): Palaios, v. 24, p. 5969.Google Scholar
Jung, P., 1971, Fossil mollusks from Carriacou, West Indies: Bulletins of American Paleontology, v. 61, p. 143262.Google Scholar
Kitano, Y.F., Benzoni, F., Arrigoni, R., Shirayama, Y., Wallace, C.C., and Fukami, H., 2014, A phylogeny of the family Poritidae (Cnidaria, Scleractinia) based on molecular and morphological analyses: PLoS ONE, v. 9. doi.org/10.1371/journal.pone.0098406Google Scholar
Klaus, J.S., Budd, A.F., and McNeill, D.F., 2008, Assessing community change in Miocene to Pliocene coral assemblages of the northern Dominican Republic, in Nehm, R.H., and Budd, A.F., eds., Evolutionary Stasis and Change in the Dominican Republic Neogene: Springer Science and Business Media B.V., p. 193224.Google Scholar
Klaus, J.S., McNeill, D.F., Budd, A.F., and Coates, A.G., 2012, Neogene reef coral assemblages of the Bocas del Toro Archipelago, Panama: The rise of Acropora palmata: Coral Reefs, v. 31, p. 191203.Google Scholar
Klaus, J.S., Meeder, J.F., McNeill, D.F., Woodhead, J.F., and Swart, P.K., 2017, Expanded Florida reef development during the mid-Pliocene warm period: Global and Planetary Change, v. 152, p. 2737.Google Scholar
Lamarck, J.P.B., 1816, Histoire Naturelle Des Animaux Sans Vertèbres, 2. Les polypes: Paris, Verdière, 568 p.Google Scholar
Link, H.F., 1807, Beschreibung der Naturalien-Sammlungen der Universität zu Rostock: Rostock, Adlers Erben, v. 3, p. 161165.Google Scholar
Linnaeus, C., 1758, Systema Naturae Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Editio Decima, Reformata, v. 2: Holmiae, Laurentii Salvii, 824 p.Google Scholar
Linnaeus, C., 1767, Systema Naturae per Regna tria Naturae: Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Editio duodecima, reformata: Stockholm, Laurentii Salvii, 1, p. 5331327.Google Scholar
Michelin, H., 1843, Iconographie Zoophytologique, Description par Localités et Terrains des Polypiers Fossiles de France et Pays Environnants: Paris, Chez P. Bertrand, 192 p.Google Scholar
Milne-Edwards, H., and Haime, J., 1848, Note sur la classification de la deuxième tribu de la famille des Astréides: Académie des Sciences, Paris, Comptes Rendus, v. 27, p. 490497.Google Scholar
Moreno, F., Hendy, A.J.W., Quiroz, L., Hoyos, N., Jones, D.S., Zapata, V., Zapata, S., Ballen, G.A., Cadena, E., Cárdenas, A.L., Carrillo-Briceño, J.D., Carrillo, J.D., Delgado-Sierra, D., Escobar, J., Martínez, J.I., Martínez, C., Montes, C., Moreno, J., Pérez, N., Sánchez, R., Suárez, C., Vallejo-Pareja, M.C., and Jaramillo, C., 2015, Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia: Swiss Journal of Palaeontology, v. 134, p. 543.Google Scholar
Mutti, M., Droxler, A. W., and Cunningham, A. D., 2005, Evolution of the Northern Nicaragua Rise during the Oligocene–Miocene: Drowning by environmental factors: Sedimentary Geology, v. 175, p. 237258.Google Scholar
Newkirk, D.R., and Martin, E.E., 2009, Circulation through the Central American Seaway during the Miocene carbonate crash: Geology, v. 37, p. 8790.Google Scholar
Ortmann, A.E., 1890, Die Morphologie des Skeletts der Steinkorallen in Beziehung zur Koloniebildung: Zeitschrift für Wissenschaftliche Zoologie, v. 50, p. 278316.Google Scholar
Owen, R., 1843, Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals: London, Longman, Brown, Green and Longmans, 392 p.Google Scholar
Pallas, P.S., 1766, Elenchus Zoophytorum Sistens Generum Adumbrationes Generaliores et Specierum Cognitarum Succintas Descriptiones, cum Selectis Auctorum Synonymis: Hagæ Comitum, Franciscum Varrentrapp, 451 p.Google Scholar
Petuch, E.J., 1986, The Pliocene reefs of Miami: Their geomorphological significance in the evolution of the Atlantic coastal ridge, southeastern Florida, USA: Journal of Coastal Research, v. 2, p. 391408.Google Scholar
Prange, M, and Schulz, M., 2004, A coastal upwelling seesaw in the Atlantic Ocean as a result of the closure of the Central American Seaway: Geophysical Research Letters, v. 31, L17207. doi:10.1029/2004GL020073Google Scholar
Quoy, J.R.C., and Gaimard, J.P., 1833, Zoophytes. Voyage de découvertes de l'Astrolabe: Zoologie, v. 4: Paris, J. Tastu, 390 p.Google Scholar
Reyes, J., Santodomingo, N., and Flórez, P., 2010, Corales Escleractinios de Colombia. Serie de Publicaciones Especiales Invemar No. 14, 260 p.Google Scholar
Santodomingo, N., Novak, V., Pretković, V., Marshall, N., Di Martino, E., Giudice-Capelli, E.L., Rösler, A., Reich, S., Braga, J.C., Renema, W., and Johnson, K.G., 2015a, A diverse patch reef from turbid habitats in the middle Miocene (East Kalimantan, Indonesia): Palaios, v. 30, p. 128149.Google Scholar
Santodomingo, N., Wallace, C.C., and Johnson, K.G., 2015b, Fossils reveal a high diversity of the staghorn coral genera Acropora and Isopora (Scleractinia: Acroporidae) in the Neogene of Indonesia: Zoological Journal of the Linnean Society, v. 175, p. 677763.Google Scholar
Schmidt-Roach, S., Miller, K.J., Lundgren, P., and Andreakis, N., 2014, With eyes wide open: A revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics: Zoological Journal of the Linnean Society, v. 170, p. 133.Google Scholar
Schweigger, A.F., 1819, Beobachtungen auf Naturhistorischen Reisen. Anatomisch-Physiologische Untersuchungen über Corallen; Nebst Einem Anhange, Bemerkungen über den Bernstein Enthaltend: Berlin, Georg Reimer, p. 127.Google Scholar
Silva-Tamayo, J.C., Lara, M.E., Nana Yobo, L., Erdal, Y.D., Sanchez, J., and Zapata-Ramírez, P.A., 2017, Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean: Journal of South American Earth Sciences, v. 78, p. 213237.Google Scholar
Stemann, T.A., 2003, Reef corals of the White Limestone Group of Jamaica, in Donovan, S.K., ed., The Mid-Cainozoic White Limestone Group of Jamaica: Cainozoic Research, v. 3, p. 83107.Google Scholar
Vaughan, T.W., 1900, The Eocene and lower Oligocene coral faunas of the United States with descriptions of a few doubtfully Cretaceous species: U.S. Geological Survey, v. 39, 263 p.Google Scholar
Vaughan, T.W., 1919, Fossil corals from Central America, Cuba and Porto Rico, with an account of the American Tertiary, Pleistocene, and Recent coral reef: United States National Museum Bulletin, v. 103, p. 189524.Google Scholar
Vaughan, T.W., and Wells, J.W., 1943, Revision of the suborders, families, and genera of the Scleractinia: Geological Society of American Special Papers, v. 44, 363 p.Google Scholar
Vaughan, T.W., Cooke, W., Condit, D.D., Ross, C.P., Woodring, W.P., and Calkins, F.C., 1921, A geological reconnaissance of the Dominican Republic: Geological Survey of the Dominican Republic Memoir, v. 1, p. 1268.Google Scholar
Verrill, A.E., 1866, On the polyps and corals of Panama, with description of new species: Boston Society of Natural History Proceedings, v. 10, p. 323333.Google Scholar
von der Heydt, A., and Dijkstra, H.A., 2005, Flow reorganization in the Panama Seaway: A cause for the demise of Miocene corals?: Geophysical Research Letters, v. 32, p. 14.Google Scholar
von der Heydt, A., and Dijkstra, H.A., 2006, Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene: Paleoceanography, v. 21, PA1011. doi:10.1029/2005PA001149Google Scholar
Weerdt, W.H. de, 1984, Taxonomic characters in Caribbean Millepora species (Hydrozoa, Coelenterata): Bijdragen tot de Dierkunde, v. 54, p. 243262.Google Scholar
Weerdt, W.H. de, 1990, Discontinuous distribution of the tropical west Atlantic hydrocoral Millepora squarrosa: Beaufortia, v. 41, p. 195203.Google Scholar
Weisbord, N.E., 1973, New and little-know corals from the Tampa Formation of Florida: Geological Bulletin, State of Florida Department of Natural Resources, Division of Interior Resources, Bureau of Geology, v. 56, p. 1157.Google Scholar
Weisbord, N.E., 1974, Late Cenozoic corals of south Florida: Bulletins of American Paleontology, v. 66, p. 259544.Google Scholar
Wells, J.W., 1956, Scleractinia, in Moore, R.C., ed. Treatise on Invertebrate Paleontology, Part F. Coelenterata: Lawrence, Geological Society of America and University of Kansas Press, p. 328440.Google Scholar
Woodring, W.P., 1957, Geology and paleontology of Canal Zone and adjoining parts of Panama: United States Geological Survey Professional Paper, v. 306, p. 1145.Google Scholar