Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-06T08:00:00.225Z Has data issue: false hasContentIssue false

Matoniaceous ferns (Gleicheniales) from the Middle Triassic of Antarctica

Published online by Cambridge University Press:  20 May 2016

Sharon D. Klavins
Affiliation:
Department of Ecology and Evolutionary Biology, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045-7534, , ,
Thomas N. Taylor
Affiliation:
Department of Ecology and Evolutionary Biology, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045-7534, , ,
Edith L. Taylor
Affiliation:
Department of Ecology and Evolutionary Biology, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045-7534, , ,

Abstract

The Matoniaceae is one of the most ancient lineages of extant ferns, with a fossil record that extends from the early Mesozoic. Currently they are considered to be a systematically isolated group that occupies a basal position in the phylogeny of leptosporangiate ferns. Although the extant taxa of Matoniaceae are today restricted to the Malaysian archipelago, a diverse assemblage of matoniaceous ferns occurred on every continent, including Antarctica, during the Mesozoic. Here we describe anatomically preserved, detached fern sori and sporangia from the Fremouw Formation with a combination of characters that affiliates them with the Matoniaceae. Sori are peltate with more than 25 crowded sporangia that display simple maturation. The indusium is multiseriate and centrally attached to a massive, vascularized receptacle. Sporangia are globose to ovoid with vertical, meandering, incomplete annuli, and are helically attached to the receptacle in three to four gyres. This report places this fern as the earliest known occurrence of the Matoniaceae in the fossil record. Characters observed in the sori offer insights regarding organizational patterns of reproductive structures in the family. Additionally, the presence of a peltate indusium in the earliest known representative of the family contradicts the hypothesized evolutionary sequence in development of this structure in the family.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash, S., Litwin, R. J., and Traverse, A. 1982. The Upper Triassic fern Phlebopteris smithii (Daugherty) Arnold and its spores. Palynology, 6:203219.Google Scholar
Axsmith, B. J., Krings, M., and Taylor, T. N. 2001. A filmy fern from the Upper Triassic of North Carolina (USA). American Journal of Botany, 88:15581567.Google Scholar
Baker, J. G. 1891. A summary of new ferns which have been discovered or described since 1874. Annals of Botany, 5:181222.Google Scholar
Barrett, P. J., and Elliott, D. H. 1973. Reconnaissance geologic map of the Buckley Island Quadrangle, Transantarctic Mountains, Antarctica. Antarctic Geological Map (U.S. Geological Survey) A-3.Google Scholar
Bower, F. O. 1923. The Ferns (Filicales) Treated Comparatively with a View to Their Natural Classification, Volume I, Analytical Examination of the Criteria of Comparison. Cambridge University Press, Cambridge, 359 p.Google Scholar
Bower, F. O. 1926. The Ferns (Filicales) Treated Comparatively with a View to Their Natural Classification, Volume II, The Eusporangiatae and Other Relatively Primitive Ferns. Cambridge University Press, Cambridge, 344 p.Google Scholar
Brongniart, A. 1828. Histoire des végétaux fossiles ou recherches botaniques et géologiques sur les végétaux renfermés dans les diverses couches du globe, Volume 1, G. Dufour and E. D'Ocagne, Paris, 487 p.Google Scholar
Collinson, M. E. 1996. “What use are fossil ferns?”—20 years on: with a review of the fossil history of extant pteridophyte families and genera, p. 349394. In Camus, J. M., Gibby, M., and Johns, R. J. (eds.), Pteridology in Perspective. Royal Botanic Gardens, Kew.Google Scholar
Compton, R. H. 1909. The anatomy of Matonia sarmentosa, Baker. New Phytologist, 8:299310.Google Scholar
Copeland, E. B. 1947. Genera Filicum: the Genera of Ferns. Chronica Botanica Co., Waltham, Massachusetts, 247 p.Google Scholar
Cronquist, A., Takhtajan, A., and Zimmerman, W. 1966. On the higher taxa of Embryobionta. Taxon, 15:129168.Google Scholar
Delevoryas, T., Taylor, T. N., and Taylor, E. L. 1992. A marattialean fern from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 74:101107.Google Scholar
Farabee, M. J., Taylor, E. L., and Taylor, T. N. 1990. Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Review of Palaeobotany and Palynology, 65:257265.CrossRefGoogle Scholar
Galtier, J., and Phillips, T. L. 1996. Structure and evolutionary significance of Palaeozoic ferns, p. 417433. In Camus, J. M., Gibby, M., and Johns, R. J. (eds.), Pteridology in Perspective. Royal Botanic Gardens, Kew.Google Scholar
Galtier, J., and Phillips, T. L. 1999. The acetate peel technique, p. 6770. In Jones, T. P. and Rowe, N. P. (eds.), Fossil Plants and Spores: Modern Techniques. Geological Society Special Publication, London.Google Scholar
Givulescu, R., and Popa, M. 1998. Aninopteris formosa Givulescu et Popa, gen. et sp. nov., a new Liassic matoniaceous genus and species from Anina, Banat, Romania. Review of Palaeobotany and Palynology, 104:5166.Google Scholar
Hall, J. W. 1965. Remains of a Cretaceous member of the Matoniaceae [Abstract]. American Journal of Botany, 52:638639.Google Scholar
Harris, T. M. 1961. The Yorkshire Jurassic Flora, Volume I, Thallophyta—Pteridophyta. British Museum (Natural History), London, 212 p.Google Scholar
Harris, T. M. 1980. The Yorkshire Jurassic fern Phlebopteris braunii (Goeppert) and its reference to Matonia R. Br. Bulletin of the British Museum (Natural History), 33:295311.Google Scholar
Hasebe, M., Omori, T., Nakazawa, M., Sano, T., Kato, M., and Iwatsuki, K. 1994. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proceedings of the National Academy of Science, USA, 91:57305734.CrossRefGoogle ScholarPubMed
Hennipman, E. 1996. Scientific consensus classification of Pteridophyta, p. 191202. In Camus, J. M., Gibby, M., and Johns, R. J. (eds.), Pteridology in Perspective. Royal Botanic Gardens, Kew.Google Scholar
Hirmer, M., and Hoerhammer, L. 1936. Morphologie, Systematik und geographische Verbreitung der fossilen und rezenten Matoniaceen. Palaeontographica, 81B:170.Google Scholar
Kato, M. 1993. A taxonomic study of the genus Matonia (Matoniaceae). Blumea, 38:167172.Google Scholar
Kato, M. 1998. Matoniaceae, p. 289294. In Kalkman, C. and Nooteboom, H. P. (eds.), Flora Malesiana, Series II, Volume 3. Rijksherbarium/Hortus Botanicus, Leiden, The Netherlands.Google Scholar
Kato, M., and Setoguchi, H. 1999. An rbcL-based phylogeny and heteroblastic leaf morphology of Matoniaceae. Systematic Botany, 23:391400.Google Scholar
Kitching, J. W., Collinson, J. W., Elliot, D. H., and Colbert, E. H. 1972. Lystrosaurus Zone (Triassic) fauna from Antarctica. Science, 175:524527.Google Scholar
Kramer, K. U., and Tryon, R. M. 1990. Introduction to the treatment of pteridophytes, p. 1213. In Kubitzki, K. (ed.), The Families and Genera of Vascular Plants. Kramer, K. U. and Green, P. S. (eds.), Volume I, Pteridophytes and Gymnosperms. Springer-Verlag, New York.Google Scholar
Kyle, R. A., and Fasola, A. 1978. Triassic palynology of the Beardmore Glacier area of Antarctica. Palinologia, 1:313319.Google Scholar
Kyle, R. A., and Schopf, J. M. 1982. Permian and Triassic palynostratigraphy of the Victoria Group, Transantarctic Mountains, p. 649659. In Craddock, C. (ed.), Antarctic Geoscience. University of Wisconsin Press, Madison.Google Scholar
Leunis, J. 1877. Synopsis der Pflanzenkunde. Band 3:Specielle Botanik, Kryptogamen, second edition. Hahn'sche Buchhandlung, Hannover, 675 p.Google Scholar
Litwin, R. J. 1985. Fertile organs and in situ spores of ferns from the Late Triassic Chinle Formation of Arizona and New Mexico, with discussion of the associated dispersed spores. Review of Palaeobotany and Palynology, 44:101146.Google Scholar
Millay, M. A., and Taylor, T. N. 1990. New fern stems from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 62:4164.Google Scholar
Nishida, H. 1973. On some petrified plants from the Cretaceous of Choshi, Chiba Prefecture VI. Botanical Magazine Tokyo, 86:189202.Google Scholar
Nishida, H., Yoshida, A., and Nishida, M. 1998. Permineralized Matoniaceous fossils from the Cretaceous of Japan. Journal of Japanese Botany, 73:2634.Google Scholar
Phipps, C. J., Axsmith, B. J., Taylor, T. N., and Taylor, E. L. 2000. Gleichenipteris antarcticus gen. et sp. nov. from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 108:7583.Google Scholar
Presl, C. 1847. Die Gefässbündel im Stipes der Farrn. Prague, Druck der königlich kaiserlichen Hofbuchdruckerei von Gottlieb Haase Söhne, 48 p.Google Scholar
Pryer, K. M., Smith, A. R., and Skog, J. E. 1995. Phylogenetic relationships of extant ferns based on evidence from morphology and rbcL sequences. American Fern Journal, 85:205282.Google Scholar
Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409:618622.CrossRefGoogle ScholarPubMed
Rothwell, G. W. 1987. Complex Paleozoic Filicales in the evolutionary radiation of ferns. American Journal of Botany, 74:458461.Google Scholar
Rothwell, G. W. 1999. Fossils and ferns in the resolution of land plant phylogeny. Botanical Review, 65:188218.Google Scholar
Rothwell, G. W., Taylor, E. L., and Taylor, T. N. 2002. Ashicaulis woolfei n. sp.: additional evidence for the antiquity of osmundaceous ferns from the Triassic of Antarctica. American Journal of Botany, 89:352361.Google Scholar
Schenk, A. 1867. Die fossile Flora der Grenzschichten des Keupers und Lias Frankens, Pt. 4. C. W. Kreidel, Wiesbaden, 232 p.Google Scholar
Schenk, A. 1871. Beiträge zur Flora vorwelt—Die Flora der norwestdeutschen Wealden-formation. Palaeontographica, 19:203266.Google Scholar
Schopf, J. M. 1978. An unusual osmundaceous specimen from Antarctica. Canadian Journal of Botany, 56:30833095.CrossRefGoogle Scholar
Semaka, A. 1971. Matoniaceele fosile din România. Dari de seama ale sedintelor, 57(3):125146.Google Scholar
Seward, A. C. 1899. On the structure and affinities of Matonia pectinata, R. Br., with notes on the geological history of the Matonineae. Philosophical Transactions of the Royal Society (London) B, 191:171209.Google Scholar
Seward, A. C. 1910. Fossil Plants, Volume II. Cambridge University Press, Cambridge.Google Scholar
Sharma, B. D., and Bohra, D. R. 1976. A petrified matoniaceous rhizome from Amarjola in the Rajmahal Hills, India. The Palaeobotanist, 25:457460(publ. 1978).Google Scholar
Skog, J. E. 2001. Biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia, 53:236269.Google Scholar
Skog, J. E., and Litwin, R. J. 1995. Reexamination of the fossil fern genus Dryopteris Berry based on reproductive characteristics. Review of Palaeobotany and Palynology, 89:235256.Google Scholar
Smith, G. M. 1955. Cryptogamic Botany, Volume II, Bryophytes and Pteridophytes. McGraw-Hill, New York, 399 p.Google Scholar
Snigerevskaya, N. S. 1977. Rhizome of a matoniaceous fern (family Matoniaceae, order Filicales) from Jurassic deposits of East Siberia. Botanical Zhurnal, 62:858862. (In Russian)Google Scholar
Stevenson, D. W., and Loconte, H. 1996. Ordinal and familial relationships of pteridophyte genera, p. 435467. In Camus, J. M., Gibby, M., and Johns, R. J. (eds.), Pteridology in Perspective. Royal Botanic Gardens, Kew.Google Scholar
Tidwell, W. D., and Ash, S. R. 1994. A review of selected Triassic to Early Cretaceous ferns. Journal of Plant Research, 107:417422.Google Scholar
Tidwell, W. D., and Skog, J. E. 1992. Two new fossil matoniaceous stem genera from Tasmania, Australia. Review of Palaeobotany and Palynology, 70:253277.Google Scholar
Vangerow, S., Teerkorn, T., and Knoop, V. 1999. Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biology (Stuttgart), 1:235243.Google Scholar
Van Konijnenburg-van Cittert, J. H. A. 1993. A review of the Matoniaceae based on in situ spores. Review of Palaeobotany and Palynology, 78:235267.Google Scholar
Walker, T. G., and Jermy, A. C. 1982. The ecology and cytology of Phanerosorus (Matoniaceae). Fern Gazette, 12:209213.Google Scholar
Wallich, N. 1829. Plantae Asiaticae rariores; or, descriptions and figures of a select number of unpublished East Indian Plants, Volume 1, Pt. 1. Treuttel and Würtz, London, 84 p., 100 pl.Google Scholar
Wolf, P. G., Pryer, K. M., Smith, A. R., and Hasebe, M. 1998. Phylogenetic studies of extant pteridophytes, p. 541556. In Soltis, D. E., Soltis, P. S., and Doyle, J. J. (eds.), Molecular Systematics of Plants II: DNA Sequencing. Kluwer Academic Publishers, Boston.Google Scholar
Yoroi, R., and Kato, M. 1987. Wild gametophytes of Phanerosorus major (Matoniaceae). American Journal of Botany, 74:354359.Google Scholar
Zeiller, R. 1885. Sur les affinités du genre Laccopteris. Société Botanique de France, 32:2125.Google Scholar