Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T06:03:43.765Z Has data issue: false hasContentIssue false

A new Griesbachian–Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China

Published online by Cambridge University Press:  30 August 2018

Xu Dai
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 〈haijunsong@cug.edu.cn〉, 〈xudai@cug.edu.cn〉
Haijun Song
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 〈haijunsong@cug.edu.cn〉, 〈xudai@cug.edu.cn〉
Arnaud Brayard
Affiliation:
Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France 〈arnaud.brayard@u-bourgogne.fr〉
David Ware
Affiliation:
Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany 〈david.ware@mfn.berlin〉

Abstract

Bed-by-bed sampling of the lower portion of the Daye Formation at Gujiao, Guizhou Province, South China, yielded new Griesbachian–Dienerian (Induan, Early Triassic) ammonoid faunas showing a new regional Induan ammonoid succession. This biostratigraphic scheme includes in chronological order the late Griesbachian Ophiceras medium and Jieshaniceras guizhouense beds, and the middle Dienerian Ambites radiatus bed. The latter is recognized for the first time as a separate biozone in South China. Eight genera and 13 species are identified, including one new species, Mullericeras gujiaoense n. sp. The new data show that a relatively high level of ammonoid taxonomic richness occurred rather rapidly after the Permian/Triassic mass extinction in the late Griesbachian, echoing similar observations in other basins, such as in the Northern Indian Margin.

UUID: http://zoobank.org/a24a3387-f3dd-4da4-a134-84372352a63d

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T.J., and Twitchett, R.J, 2010, Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences: Geology, v. 38, p. 1021026.Google Scholar
Arthaber, G., 1911, Die Trias von Albanien: Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, v. 24, p. 169277.Google Scholar
Bagherpour, B., Bucher, H., Baud, A., Brosse, M., Vennemann, T., Martini, R., and Guodun, K., 2017, Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, South China Block: Gondwana Research, v. 44, p. 178204.Google Scholar
Bai, R., Dai, X., and Song, H., 2017, Conodont and ammonoid biostratigraphies around Permian-Triassic boundary from Jianzishan of Hubei, South China: Journal of Earth Science, v. 28, p. 595613.Google Scholar
Bambach, R.K., Knoll, A.H., and Sepkoski, J.J., 2002, Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm: Proceedings of the National Academy of Sciences, v. 99, no. 10, p. 68546859. doi:10.1073/pnas.092150999.Google Scholar
Bando, Y., 1981, Lower Triassic ammonoids from Guryul Ravine and the Spur three kilometers north of Burus, in Nakazawa, K., and Kapoor, H.M., eds., The Upper Permian and Lower Triassic fossils of Kashmir: Palaeontologia Indica, New Series, v. 46, p. 137171.Google Scholar
Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2017, Precise age for the Permian-Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling: Solid Earth v. 8, p. 361378.Google Scholar
Bengtson, P., 1988, Open nomenclature: Palaeontology, v. 31, p. 223227.Google Scholar
Brayard, A., and Bucher, H., 2008, Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (South China): Taxonomy and biochronology: Fossils and Strata, v. 55, p. 1184.Google Scholar
Brayard, A., and Bucher, H., 2015, Permian-Triassic Extincitons and Rediversifications, in Klug, C., et al., eds., Ammonoid Paleobiology: From Macroevolution to Paleogeography: Topics in Geobiology, 44: New York, Springer, p. 465473.Google Scholar
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., and Galfetti, T., 2006, The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 239, p. 374395.Google Scholar
Brayard, A., Escarguel, G., and Bucher, H., 2007a, The biogeography of Early Triassic ammonoid faunas: Clusters, gradients, and networks: Geobios, v. 40, p. 749765.Google Scholar
Brayard, A., Bucher, H., Brühwiler, T., Galfetti, T., Goudemand, N., Guodun, K., Escarguel, G., and Jenks, J.F., 2007b, Proharpoceras Chao: A new ammonoid lineage surviving the end‐Permian mass extinction: Lethaia, v. 40, p. 175181.Google Scholar
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J., 2009a, Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction: Science, v. 325, p. 11181121.Google Scholar
Brayard, A., Escarguel, G., Bucher, H., and Brühwiler, T., 2009b, Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: Paleoceanographic and paleogeographic implications: Journal of Asian Earth Science, v. 36, p. 420433.Google Scholar
Brosse, M., Brayard, A., Fara, E., and Neige, P., 2013, Ammonoid recovery after the Permian–Triassic mass extinction: A re-exploration of morphological and phylogenetic diversity patterns: Journal of the Geological Society, v. 170, p. 225236. doi: 10.1144/jgs2012-084.Google Scholar
Brosse, M., Bucher, H., Bagherpour, B., Baud, A., Frisk, Å.M., Guodun, K., and Goudemand, N., 2015, Conodonts from the Early Triassic microbialite of Guangxi (South China): Implications for the definition of the base of the Triassic System: Palaeontology, v. 58, p. 563584.Google Scholar
Brosse, M., Bucher, H., and Goudemand, N., 2016, Quantitative biochronology of the Permian–Triassic boundary in South China based on conodont unitary associations: Earth-Science Reviews, v. 155, p. 153171.Google Scholar
Brosse, M., Baud, A., Bhat, G.M., Bucher, B., Leu, M., Vennemann, T., and Goudemand, N., 2017, Conodont-based Griesbachian biochronology of the Guryul Ravine section (basal Triassic, Kashmir, India): Geobios, v. 50, p. 359387.Google Scholar
Brühwiler, T., Brayard, A., Bucher, H., and Guodun, K., 2008, Griesbachian and Dienerian (Early Triassic) ammonoid faunas from Northwestern Guangxi and Southern Guizhou (South China): Palaeontology, v. 51, p. 11511180.Google Scholar
Brühwiler, T., Bucher, H., Brayard, A., and Goudemand, N., 2010a, High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: The Smithian faunas from the North Indian Margin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 297, p. 491501.Google Scholar
Brühwiler, T., Ware, D., Bucher, H., Krystyn, L., and Goudemand, N., 2010b, New Early Triassic ammonoid faunas from the Dienerian/Smithian boundary beds at the Induan/Olenekian GSSP candidate at Mud (Spiti, Northern India): Journal of Asian Earth Sciences, v. 39, p. 724739.Google Scholar
Brühwiler, T., Bucher, H., Roohi, G., Yaseen, A., and Rehman, K., 2011, A new early Smithian ammonoid fauna from the Salt Range (Pakistan): Swiss Journal of Palaeontology, v. 130, p. 187201.Google Scholar
Brühwiler, T., Bucher, H., Ware, D., Hermann, E., Hochuli, P. A., Roohi, G., Rehman, K., and Yaseen, A., 2012a, Smithian (Early Triassic) ammonoids from the Salt Range, Pakistan: Special papers in Palaeontology, v. 88, p. 1114.Google Scholar
Brühwiler, T., Bucher, H., Goudemand, N., and Galfetti, T., 2012b, Smithian (Early Triassic) ammonoids faunas from exotic blocks from Oman: Taxonomy and biochronology: Palaeontographica, Abteilung A, v. 296, p. 3107.Google Scholar
Bu, J., Wu, S., Zhang, H., Meng, Y., Zhang, F., and Zhang, L., 2006, Permian-Triassic cephalopods from Dongpan Section, Guangxi, and its geological significance: Geological Science and Technology Information, v. 25, p. 4751.Google Scholar
Chao, K., 1959, Lower Triassic ammonoids from Western Kwangsi, China: Palaeontologia Sinica New Series B, v. 9, p. 1355.Google Scholar
Chen, J., Tong, J., Song, H., Luo, M., Huang, Y., and Xiang, Y., 2015, Recovery pattern of brachiopods after the Permian-Triassic crisis in South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 433, p. 91105.Google Scholar
Chen, Z.Q., and Benton, M.J., 2012, The timing and pattern of biotic recovery following the end-Permian mass extinction: Nature Geoscience, v. 5, p. 375383.Google Scholar
Clark, D.L., 1959, Conodonts from the Triassic of Nevada and Utah: Journal of Paleontology, v. 33, no. 2, p. 305312.Google Scholar
Clarkson, M., Kasemann, S., Wood, R., Lenton, T., Daines, S., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S., and Tipper, E., 2015, Ocean acidification and the Permo-Triassic mass extinction: Science, v. 348, p. 229232.Google Scholar
Dai, X., Song, H., Wignall, P.B., Jia, E., Bai, R., Wang, F., Chen, J., and Tian, L., 2018, Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction: Geological Society of America Bulletin, doi: 10.1130/B31969.1.Google Scholar
de Koninck, L.G., 1863, Description of some fossils from India, discovered by Dr. A. Fleming, of Edingburgh: Quarterly Journal of the Geological Society of London, v. 19, p. 119.Google Scholar
Diener, C., 1895, Triadische Cephalopodenfaunen der ostsibirischen Küstenprovinz: Mémoires du Comité Géologique St Petersburg, v. 14, 59 p.Google Scholar
Diener, C., 1897, The Cephalopoda of the Lower Trias: Palaeontologia Indica, v. 15, 181 p.Google Scholar
Diener, C., 1913, Triassic faunae of Kashmir: Palaeontologia Indica, v. 5, 133 p.Google Scholar
Feng, Z., Bao, Z., and Liu, S., 1997, Lithofacies Palaeogeography of Early and Middle Triassic of South China: Beijing, Petroleum Industry Press, 222 p.Google Scholar
Foster, W.J., Danise, S., Price, G.D., and Twitchett, R.J., 2017, Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy: PLoS One, v. 12, p. e0172321.Google Scholar
Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N., Weissert, H., Hochuli, P. A., Cordey, F., and Guodun, K., 2007, Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones: Earth and Planetary Science Letters, v. 25, p. 593604.Google Scholar
Galfetti, T., Bucher, H., Martini, R., Hochuli, P.A., Weissert, H., Crasquin-Soleau, S., Brayard, A., Goudemand, N., Brühwiler, T., and Guodun, K., 2008, Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery: Sedimentary Geology, v. 204, p. 3660.Google Scholar
Griesbach, C.L., 1880, Palaeontological notes on the Lower Trias of the Himalayas: Records of the Geological Survey of India, v. 13, no. 2, p. 94113.Google Scholar
Hallam, A., 1991, Why was there a delayed radiation after the end-Palaeozoic extinctions?: Historical Biology, v. 5, p. 257262.Google Scholar
Harries, P.J., Kauffman, E.G., and Hansen, T.A., 1996, Models for biotic survival following mass extinction: Geological Society, London, Special Publications, v. 102, no. 1, p. 4160.Google Scholar
Hermann, E., Hochuli, P.A., Méhay, S., BuYincher, H., Brühwiler, T., Ware, D., Hautmann, M., Roohi, G., ur-Rehman, K., and Yaseen, A., 2011, Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records: Sedimentary Geology, v. 234, p. 1941.Google Scholar
Hofmann, R., Hautmann, M., Wasmer, M., and Bucher, H., 2013, Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery: Acta Palaeontologica Polonica, v. 58, no. 1, p. 149173.Google Scholar
Hsü, T.Y., 1937, Contribution to the marine Lower Triassic fauna of Southern China: Bulletin of the Geological Society of China, v. 16, p. 303347.Google Scholar
Huang, Y., Tong, J., Fraiser, M.L., and Chen, Z., 2014, Extinction patterns among bivalves in South China during the Permian-Triassic crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 399, p. 7888.Google Scholar
Hyatt, A., 1884, Genera of fossil cephalopods: Proceedings of the Boston Society of Natural History, v. 22, p. 253338.Google Scholar
Jattiot, R., Bucher, H., Brayard, A., Monnet, C., Jenks, J.F., and Hautmann, M., 2016, Revision of the genus Anasibirites Mojsisovics (Ammonoidea): An iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction: Papers in Palaeontology, v. 2, p. 155188.Google Scholar
Jattiot, R., Bucher, H., Brayard, A., Brosse, M., Jenks, J.F., and Bylund, K.G, 2017, Smithian ammonoid faunas from northeastern Nevada: Implications for Early Triassic biostratigraphy and correlation within the western USA basin: Palaeontographica Abteilung A, v. 309, p. 189.Google Scholar
Jenks, J.F., and Brayard, A., 2018, New Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: Implications for taxonomy, biostratigraphy and biogeography cover: New Mexico Museum of Natural History and Science, Bulletin, v. 78, p. 1175.Google Scholar
Jenks, J.F., Monnet, C., Balini, M., Brayard, A., and Meier, M., 2015, Biostratigraphy of Triassic ammonoids, in Klug, C., et al., eds., Ammonoid Paleobiology: From Macroevolution to Paleogeography: Topics in Geobiology, 44: New York, Springer, p. 329388.Google Scholar
Jiang, H., Lai, X., Sun, Y., Wignall, P.B., Liu, J., and Yan, C., 2014, Permian-Triassic conodonts from Dajiang (Guizhou, South China) and their implication for the age of microbialite deposition in the aftermath of the end-Permian mass extinction: Journal of Earth Science, v. 25, p. 413430.Google Scholar
Joachimski, M.M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., and Sun, Y., 2012, Climate warming in the latest Permian and the Permian-Triassic mass extinction: Geology, v. 40, p. 195198.Google Scholar
Kaim, A., Nützel, A., Bucher, H., Brühwiler, T., and Goudemand, N, 2010, Early Triassic (Late Griesbachian) gastropods from South China (Shanggan, Guangxi): Swiss Journal of Geosciences, v. 103, p. 121128.Google Scholar
Kauffman, E.G., and Harries, P.J., 1996, The importance of crisis progenitors in recovery from mass extinction: Geological Society, London, Special Publications, v. 102, no. 1, p. 1539.Google Scholar
Kozur, H., and Pjatakova, M., 1976, Die Conodontenart Anchignathodus parvus n. sp., eine wichtige Leitform der basalen Trias: Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam: Proceedings Series B, v. 79, p. 123128.Google Scholar
Krafft, A.V., and Diener, C., 1909, Lower Triassic Cephalopoda from Spiti, Malla Johar, and Byans: Palaeontologia Indica, v. 15, 186 p.Google Scholar
Krystyn, L., and Orchard, M.J., 1996, Lowermost Triassic ammonoid and conodont biostratigraphy of Spiti, India: Albertiana, v. 17, p. 1021.Google Scholar
Krystyn, L., Richoz, S., Baud, A., and Twitchett, R.J., 2003, A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 191, p. 329344.Google Scholar
Krystyn, L., Balini, M., and Nicora, A., 2004, Lower and Middle Triassic stage and substage boundaries in Spiti: Albertiana, v. 3, p. 4053.Google Scholar
Krystyn, L., Richoz, S., and Bhargava, O.N., 2007, The Induan-Olenekian Boundary (IOB) in Mud—An update of the candidate GSSP section M04: Albertiana, v. 36, p. 3345.Google Scholar
Kummel, B., 1966, The Lower Triassic Formations of the Salt Range and Trans-Indus Ranges, West Pakistan: Bulletin of the Museum of Comparative Zoology, Harvard University, v. 134, p. 361429.Google Scholar
Kummel, B., 1972, The Lower Triassic (Scythian) ammonoid Octoceras : Bulletin of the Museum of Comparative Zoology, v. 143, p. 365393.Google Scholar
Lehrmann, D.J., Wei, J., and Enos, P., 1998, Controls on facies architecture of a large Triassic carbonate platform: The Great Bank of Guizhou, Nanpanjiang Basin, South China: Journal of Sedimentary Research, v. 68, p. 311326.Google Scholar
Leonardi, P., 1935, Il trias inferiore delle Venezie: Memorie dell’Istituto Geologico della R: Università di Padova, v. 11, p. 192.Google Scholar
Liang, L., Tong, J., Song, H., Song, T., Tian, L., Song, H., and Qiu, H., 2016, Lower-Middle Triassic conodont biostratigraphy of the Mingtang section, Nanpanjiang Basin, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 459, p. 381393.Google Scholar
Matthews, S.C., 1973, Notes on open nomenclature and synonymy lists: Palaeontology, v. 16, p. 713719.Google Scholar
Mu, L., Zakharov, Y., Li, W., and Shen, S., 2007, Early Induan (Early Triassic) cephalopods from the Daye Formation at Guiding, Guizhou Province, South China: Journal of Paleontology, v. 81, p. 858872.Google Scholar
Orchard, M.J., 2007, Conodont diversity and evolution through the latest Permian and Early Triassic upheavals: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 93117.Google Scholar
Orchard, M.J., and Krystyn, L., 1998, Conodonts of the lowermost Triassic of Spiti, and new zonation based on Neogondolella successions: Rivista Italiana di Paleontologia e Stratigrafia, v. 104, no. 3, p. 341368.Google Scholar
Pan, H.Z., Erwin, D.H., Nützel, A., and Zhu, X.S., 2003, Jiangxispira, a new gastropod genus from the Early Triassic of China with remarks on the phylogeny of the Heterostropha at the Permian/Triassic boundary: Journal of Paleontology, v. 77, p. 4449.Google Scholar
Patte, E., 1935, Fossils paleozoiques et Mésozoiques du sud-ouest de la Chine: Palaeontologia Sinica B, v. 15, p. 150.Google Scholar
Payne, J.L., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P., and Knoll, A.H., 2004, Large perturbations of the carbon cycle during recovery from the end-Permian extinction: Science, v. 305, p. 506509.Google Scholar
Raup, D.M., 1979, Size of the Permo-Triassic bottleneck and its evolutionary implications: Science, v. 206, p. 217218.Google Scholar
Romano, C., Goudemand, N., Vennemann, T.W., Ware, D., Schneebeli-Hermann, E., Hochuli, P.A., Brühwiler, T., Brinkmann, W., and Bucher, H., 2013, Climatic and biotic upheavals following the end-Permian mass extinction: Nature Geoscience, v. 6, p. 5760.Google Scholar
Schindewolf, O.H., 1954, Über die Faunenwende vom Paläozoikum zum Mesozoikum: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 105, p. 153182.Google Scholar
Scotese, C.R., 2001, Atlas of earth history: University of Texas at Arlington, Department of Geology, PALEOMAP Project.Google Scholar
Shigeta, S., and Zakharov, Y.D., 2009, Cephalopods, in Shigeta, Y., Zakharov, Y.D., Maeda, H., and Popov, A.M., eds., The Lower Triassic System in the Abrek Bay Area, South Primorye: Russia, National Museum of Nature and Science Monographs, v. 38, p. 44140.Google Scholar
Song, H., Wignall, P.B., Chen, Z., Tong, J., Bond, D.P., Lai, X., Zhao, X., Jiang, H., Yan, C., and Niu, Z., 2011, Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction: Geology, v. 39, p. 739742.Google Scholar
Song, H., Wignall, P.B., Tong, J., Bond, D.P., Song, H., Lai, X., Zhang, K., Wang, H., and Chen, Y., 2012, Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery: Earth and Planetary Science Letters, v. 353, p. 1221.Google Scholar
Song, H., Wignall, P.B., Tong, J., and Yin, H., 2013, Two pulses of extinction during the Permian-Triassic crisis: Nature Geoscience, v. 6, p. 5256.Google Scholar
Song, H., Wignall, P., Tong, J., Song, H., Chen, J., Chu, D., Tian, L., Luo, M., Zong, K., Chen, Y., Lai, X. Zhang, K., and Wang, H., 2015a, Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic: Earth and Planetary Science Letters, v. 424, p. 140147.Google Scholar
Song, H., Yang, L., Tong, J., Chen, J., Tian, L., Song, H., and Chu, D., 2015b, Recovery dynamics of foraminifers and algae following the Permian-Triassic extinction in Qingyan: South China: Geobios, v. 48, p. 7183.Google Scholar
Song, H., Jiang, G., Poulton, S., WIgnall, P., Tong, J., Song, H., An, Z., Chu, D., Tian, L., She, Z., and Wang, C. 2017, The onset of widespread marine red beds and the evolution of ferruginous oceans: Nature Communications, v. 8, p. 399.Google Scholar
Spath, L.F., 1930, The Eo-Triassic invertebrate fauna of East Greenland: Meddelelser om Grønland, v. 83, 90 p., 12 pls.Google Scholar
Spath, L.F., 1934, Catalogue of the Fossil Cephalopoda in the British Museum (Natural History). The ammonoidea of the Trias: London, The Trustees of the British Museum, 521 p., 18 pls.Google Scholar
Spath, L.F., 1935, Additions to the Eo-Triassic invertebrate fauna of East Greenland: Meddelelser om Grønland, v. 98, 115 p., 23 pls.Google Scholar
Stanley, S.M., 2009, Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions: Proceedings of the National Academy of Sciences, v. 106, no. 36, p. 1526415267. doi: 10.1073/pnas.0907992106.Google Scholar
Stanley, S.M., 2016, Estimates of the magnitudes of major marine mass extinctions in earth history: Proceedings of the National Academy of Sciences, v. 113, no. 42, p. E6325E6334. doi: 10.1073/pnas.1613094113.Google Scholar
Sun, Y., Joachimski, M.M., Wignall, P.B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X., 2012, Lethally hot temperatures during the Early Triassic greenhouse: Science, v. 338, p. 366370.Google Scholar
Tian, L., Tong, J., Algeo, T.J., Song, H., Song, H., Chu, D., Shi, L., and Bottjer, D.J., 2014, Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 412, p. 6879.Google Scholar
Tien, C.C., 1933, Lower Triassic cephalopods of South China: Palaeontologia Sinica, Series B, v. 15, 53 p.Google Scholar
Tong, J., Zakharov, Y.D., and Wu, S., 2004, Early Triassic ammonoid succession in Chaohu, Anhui Province: Acta Palaeontologica Sinica, v. 43, p. 192204.Google Scholar
Tong, J., Zhang, S., Zuo, J., and Xiong, X., 2007, Events during Early Triassic recovery from the end-Permian extinction: Global and Planetary Change, v. 55, p. 6680.Google Scholar
Tozer, E.T., 1994, Canadian Triassic ammonoid faunas: Geological Survey of Canada, v. 467, 663 p.Google Scholar
Trümpy, R., 1969, Lower Triassic ammonites from Jameson Land (East Greenland): Meddelelser om Grønland, v. 168, p. 77116.Google Scholar
Twitchett, R.J., Krystyn, L., Baud, A., Wheeley, J.R., and Richoz, S., 2004, Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia: Geology, v. 32, p. 805808.Google Scholar
von Hauer, F., 1850, Ueber die von Herrn Bergrath W. Fuchs in den Venetianer Alpen gesammelten Fossilien: Denkschriften der Akademie der Wissenschaften: Mathematisch-Naturwissenschaftliche Klasse, v. 2, p. 109126.Google Scholar
Waagen, W.H., 1895, Salt-Range Fossils. Vol. 2: Fossils from the Ceratite Formation: Palaeontologia Indica, v. 13, 323 p., 40 pls.Google Scholar
Wang, F., Chen, J., Dai, X., and Song, H., 2017, A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian-Triassic extinction: Papers in Palaeontology, v. 3, p. 425439.Google Scholar
Wang, Y., 1984, Earliest Triassic ammonoid faunas from Jiangsu and Zhejiang and their bearing on the definition of Permo-Triassic boundary: Acta Palaeontologica Sinica, v. 23, p. 257269.Google Scholar
Wang, Y., and He, G., 1976, Triassic ammonoids from the Mount Jolmo Lungma region: A report of scientific expedition in the Mount Jolmo-Lungma region (1966–1968): Palaeontology, v. 3, p. 223502.Google Scholar
Ware, D., Jenks, J.F., Hautmann, M., and Bucher, H., 2011, Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography: Swiss Journal of Geosciences, v. 104, p. 161181.Google Scholar
Ware, D., Bucher, H., Brayard, A., Schneebeli-Hermann, E., and Brühwiler, T., 2015, High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: The Dienerian faunas of the Northern Indian Margin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 440, p. 363373.Google Scholar
Ware, D., Bucher, H., Brühwiler, T., Schneebeli-Hermann, E., Hochuli, P.A., Roohi, G., Ur-Rehman, K., and Yaseen, A., 2018, Griesbachian and Dienerian (Early Triassic) ammonoids from the Salt Range: Pakistan, Fossils and Strata, doi: 10.1130/B31969.1.Google Scholar
Wignall, P.B., and Twitchett, R.J., 1996, Oceanic anoxia and the end Permian mass extinction: Science, v. 227, p. 11551158.Google Scholar
Xu, G., 1988, Early Triassic cephalopods from Lichuan, Western Hubei: Acta Palaeontologica Sinica, v. 27, p. 437456.Google Scholar
Yin, H., 1985, Bivalves near the Permian-Triassic Boundary in South China: Journal of Paleontology, v. 5, p. 572600.Google Scholar
Yin, H., Zhang, K., Tong, J., Yang, Z., and Wu, S., 2001, The global stratotype section and point (GSSP) of the Permian-Triassic boundary: Episodes, v. 24, p. 102114.Google Scholar
Zakharov, Y.D, 1968, Lower Triassic Biostratigraphy and Ammonoids of South Primorye: Moskva, Nauka, 172 p.Google Scholar
Zakharov, Y.D., 1978, Lower Triassic Ammonoids of East USSR: Moskva, Nauka, 224 p.Google Scholar
Zakharov, Y.D, 1997, Recent view on the Induan, Olenekian and Anisian ammonoid taxa and zonal assemblages of South Primorye: Albertiana, v. 19, p. 2535.Google Scholar
Zakharov, Y.D., 2002, Ammonoid succession of the Setorym River (Verkhoyansk area) and the problem of the Permian–Triassic boundary in Boreal realm: Journal of China University of Geosciences, v. 13, no. 2, p. 107123.Google Scholar
Zakharov, Y.D., and Popov, A.M., 2014, Recovery of brachiopod and ammonoid faunas following the end-Permian crisis: Additional evidence from the Lower Triassic of the Russian Far East and Kazakhstan: Journal of Earth Science, v. 25, no. 1, p. 144.Google Scholar
Zhang, K., Tong, J., Shi, G., Lai, X., Yu, J., He, W., Peng, Y., and Jin, Y, 2007, Early Triassic conodont-palynological biostratigraphy of the Meishan D Section in Changxing, Zhejiang Province, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 423.Google Scholar
Zhang, Z., He, W., Zhang, Y., Yang, T., and Wu, S., 2009, Late Permian-earliest Triassic ammonoid sequences from the Rencunping section, Sangzhi County, Hunan Province, South China and their regional correlation: Geological Science and Technology Information, v. 28, p. 2330.Google Scholar
Zhao, J., Liang, X., and Zheng, Z., 1978, Late Permian cephalopods from South China: Palaeontologia Sinica, Series B, 194 p.Google Scholar
Zhao, L., Orchard, M.J., Tong, J., Sun, Z., Zuo, J., Zhang, S., and Yun, A., 2007, Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 2438.Google Scholar
Zheng, Z., 1981, Uppermost Permian (Changhsingian) ammonoids from Western Guizhou: Acta Palaeontologica Sinica, v. 20, p. 107114.Google Scholar