Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-31T03:21:22.327Z Has data issue: false hasContentIssue false

Ontogeny of Hypselocrinus Hoveyi, Mississippian Cladid Crinoid From Indiana

Published online by Cambridge University Press:  20 May 2016

William I. Ausich
Affiliation:
School of Earth Sciences, 155 South Oval Mall, The Ohio State University, Columbus 43210
Troy E. Wood
Affiliation:
Institute of Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany, current address: 1411 West Weston Trail, Flagstaff, AZ 86001, USA

Abstract

A very early juvenile specimen of Hypselocrinus hoveyi with arms and partial column attached is utilized to examine the growth in this Mississippian advanced cladid crinoid. The aboral cup height of this specimen is 4 mm. In contrast to results reported in previous studies of crinoids, Hypselocrinus hoveyi grew with a combination of allometric and isometric growth. Different plates of the aboral cup grew with a combination of growth modes, and arms grew with allometric growth or relative change in shape that was not strict allometry.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 2001. Echinoderm taphonomy, p. 171227. InLawrence, J. and Jangoux, M.(eds.), Echinoderm Studies. Vol. 6. Balkema Press, Rotterdam.Google Scholar
Ausich, W. I. and Roerser, E. W. 2012. Camerate and disparid crinoids from the late Kinderhookian Meadville Shale, Cuyahoga Formation of Ohio. Journal of Paleontology, 86:488506.Google Scholar
Ausich, W. I. and Sevastopulo, G. D. 1994. Taphonomy of Lower Carboniferous crinoids from the Hook Head Formation, Ireland. Lethaia, 27:245256.Google Scholar
Ausich, W. I., Brett, C. E., Hess, H., and Simms, M. J. 1999. Crinoid form and function, p. 330. InHess, H., Ausich, W. I., Brett, C. E., and Simms, M. J., Fossil Crinoids. Cambridge University Press, Cambridge.Google Scholar
Bather, F. A. 1899. The natural history of the Crinoidea. Proceedings of the London Amateur Scientific Society, 1 (1, 2):3233.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7:261499.Google Scholar
Brower, J. C. 1992 a. Hybocrinid and disparid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:973993.CrossRefGoogle Scholar
Brower, J. C. 1992 b. Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:99128.Google Scholar
Brower, J. C. 1996. Carabocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 70:614631.Google Scholar
Brower, J. C. 1997. Homocrinid crinoids from the Upper Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 71:442458.Google Scholar
Brower, J. C. 2002 a. Cupulocrinus angustatus (Meek and Worthern, 1870), a cladid crinoid from the Upper Ordovician Maquoketa Formation of the northern midcontinent of the United States. Journal of Paleontology, 76:109122.Google Scholar
Brower, J. C. 2002 b. Quintuplexacrinus, a new cladid crinoid from the Upper Ordovician Maquoketa Formation of the northern midcontinent of the United States. Journal of Paleontology, 76:9931006.Google Scholar
Brower, J. C. 2005. The Paleobiology and ontogeny of Cincinnaticrinus varibrachialus Warn and Strimple, 1977 from the Middle Ordovician (Shermanian) Walcott-Rust Quarry of New York. Journal of Paleontology, 79:152174.Google Scholar
Brower, J. C. 2007. Upper Ordovician crinoids from the Platteville Limestone of northeastern Iowa. Journal of Paleontology, 81:103115.Google Scholar
Brower, J. C., Lane, N. G., and Rasmussen, H. W. 1978. Postlarval ontogeny of fossil crinoids, p. T244T274. InMoore, R. C. and Teichert, K.(eds.), Treatise on Invertebrate Paleontology, Echinodermata, Pt. T (2). Geological Society of America and University of Kansas Press, Boulder and Lawrence.Google Scholar
Donovan, S. K. 1991. The taphonomy of echinoderms: Calcareous multi-element skeletons in the marine environment, p. 241269. InDonovan, S. K.(ed.), The Processes of Fossilization. Belhaven Press, London.Google Scholar
Hall, J. 1863. Preliminary notice, of some species of Crinoidea from the Waverly Sandstone series of Summit Co., Ohio, supposed to be of the age of the Chemung Group of New York. Preprint of Seventeenth Annual Report of the Regents of the University of the State of New York, on the Condition of the State Cabinet of Natural History, and the Historical and Antiquarian Collection annexed thereto, State of New York in Senate Document 189, Albany, Comstock and Cassiday Printers, p. 5060.Google Scholar
Hammer, Ø. and Harper, D. A. T. 2006. Paleontological Data Analysis. Blackwell Publishing, Oxford, 351p.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4 (1), 9p. http://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
Kammer, T. W. and Ausich, W. I. 1992. Advanced cladid crinoids from the middle Mississippian Of the east-central United States: Primitive-grade calyces. Journal of Paleontology, 66:461480.Google Scholar
Kesling, R. V. 1969. Growth patterns in Proctothylacocrinus longus Kier. University of Michigan Museum of Paleontology Contributions, 22:313322.Google Scholar
Kirk, E. 1940. Seven new genera of Carboniferous Crinoidea Inadunata. Journal of the Washington Academy of Science, 30:321334.Google Scholar
Lane, N. G. and Sevastopulo, G. D. 1982. Growth and systematic revision of Kallimorphocrinus astrus, a Pennsylvanian microcrinoid. Journal of Paleontology, 56:244259.Google Scholar
Laudon, L. R. 1967. Ontogeny of the Mississippian crinoid Platycrinites bozemanensis (Miller and Gurley, 1897). Journal of Paleontology, 41:14921497.Google Scholar
Macurda, D. B. Jr., 1968. Ontogeny of the crinoid Eucalyptocrinites. Journal of Paleontology, Memoir 2, Pt. 2. Supplement to 42, p. 99118.Google Scholar
McIntosh, G. C. 1983. Nuxocrinus and Pyrenocrinus, two new Devonian cladid inadunate crinoid genera. Journal of Paleontology, 57:495513.Google Scholar
Meek, F. B. and Worthen, A. H., 1868. Fossils of the Cincinnati Group. Illinois Geological Survey, Geology and Paleontology, 3:324343.Google Scholar
Meyer, D. L. 1965. Plate growth in some platycrinid crinoids. Journal of Paleontology, 39:12071209.Google Scholar
Meyer, D. L., Ausich, W. I., and Terry, R. E. 1989. Comparative taphonomy of echinoderms in carbonate facies: Fort Payne Formation (Lower Mississippian) of Kentucky and Tennessee. PALAIOS, 4:533552.Google Scholar
Miller, S. A. 1821. A Natural History of the Crinoidea, or Lily-Shaped Animals; with Observations on the Genera, Asteria, Euryale, Comatula and Marsupites. Bryan & Co., Bristol, England, 150p.Google Scholar
Moore, R. C. 1940. Early growth stages of Carboniferous microcrinoids and blastoids. Journal of Paleontology, 14:572583.Google Scholar
Moore, R. C. and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Papers, 46, 167p.Google Scholar
Pabian, R. K. and Strimple, H. L. 1985. Classification, Paleoecology, and Biostratigraphy of Crinoids from the Stull Shale (Late Pennsylvanian) of Nebraska, Kansas, and Iowa. University of Nebraska State Museum Bulletin, 11, 81p.Google Scholar
Peck, R. E. 1935. Growth stages of Allagecrinus americanus Rowley. Journal of Geology, 43:765770.Google Scholar
Peters, J. and Lane, N. G. 1990. Ontogenetic adaptations in some Pennsylvanian crinoids. Journal of Paleontology, 64:427435.Google Scholar
Sevastopulo, G. D. and Lane, N. G. 1988. Ontogeny and phylogeny of Disparid Crinoids, p. 245253. InPaul, C. R. C. and Smith, A. B.(eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Taylor, W. and Brett, C. E. 1996. Taphonomy and paleoecology of echinoderm Lagerstätten from the Silurian (Wenlockian) Rochester Shale. PALAIOS, 11:118140.Google Scholar
Thomka, J. R., Lewis, R. D., Mosher, D., Pabian, R. K., and Holterhoff, P. F. 2011. Genus-level taphonomic variation within cladid crinoids from the Upper Pennsylvanian Barnsdall Formation, northeastern Oklahoma. PALAIOS, 26:377389.Google Scholar
Ubaghs, G. 1978 a. Skeletal morphology of fossil crinoids, p. T58T216. InMoore, R. C. and Teichert, K.(eds.), Treatise on Invertebrate Paleontology, Echinodermata, Pt. T (2). Geological Society of America and University of Kansas Press, Boulder and Lawrence.Google Scholar
Worthen, A. H. 1875. Description of invertebrates. InMeek, F. B. and Worthen, A. H.Geology and Palaeontology. Illinois Geological Survey, 6 (2):489532.Google Scholar