Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-21T13:39:34.325Z Has data issue: false hasContentIssue false

The youngest Ediacaran fossils from Southern Africa

Published online by Cambridge University Press:  14 July 2015

Guy M. Narbonne
Affiliation:
1Department of Geological Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada,
Beverly Z. Saylor
Affiliation:
2Department of Earth, Atmospheric, and Planetary Sciences, Massachussettes Institute of Technology, Cambridge 02138, 3Department of Geology and Geophysics, University of Wisconsin, Madison 53706,
John P. Grotzinger
Affiliation:
2Department of Earth, Atmospheric, and Planetary Sciences, Massachussettes Institute of Technology, Cambridge 02138,

Abstract

Discovery of fossils of the Ediacara biota near the top of the Spitzkopf Member at farm Swartpunt extends the known range of these remains in Namibia more than 600 m to near the sub-Cambrian unconformity. The fossiliferous beds occur approximately 100 m above a volcanic ash dated at 543 ± 1 Ma, and thus may be the youngest Proterozoic Ediacara-type fossils reported anywhere in the world. Fossils are preserved within and on the tops of dm-thick beds of storm-deposited sandstone at two stratigraphic levels; the environment is interpreted as open marine, generally calm but with episodic disruptions by storm waves, and probably within the euphotic zone. The presence of Pteridinium carolinaense (St. Jean), which is also known from the classic sections in Ediacara and the White Sea among others, reinforces evidence from geochronology and chemostratigraphy that the Swartpunt section is terminal Neoproterozoic in age. The new genus and species Swartpuntia germsi is a large, multifoliate frond that exhibits at least three quilted petaloids. Macroscopically, Swartpuntia resembles Pteridinium and Ediacara-type fronds such as Charniodiscus traditionally interpreted as Cnidaria, whereas microscopically it exhibits segmentation that is remarkably similar to that of the putative worm Dickinsonia. Combination of diagnostic characters of these supposedly disparate groups in a single species suggests that many species of quilted Ediacaran organisms were more similar to each other than they were to any modern groups, and provides support for the concept of the “Vendobionta” as a late Neoproterozoic group of mainly multifoliate organisms with a distinctive quilted segmentation.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science, 261:12931298.CrossRefGoogle ScholarPubMed
Buss, L. W., and Seilacher, A., 1994. The Phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology, 20:14.CrossRefGoogle Scholar
Conway Morris, S. 1993a. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36:593635.Google Scholar
Conway Morris, S. 1993b. The fossil record and the early evolution of the Metazoa. Nature, 361:219225.CrossRefGoogle Scholar
Crimes, T. P., and Fedonkin, M. A., 1996. Biotic changes in platform communities across the Precambrian-Phanerozoic boundary. Rivista Italiana di Paleontologia e Stratigrifa, 102:317322.Google Scholar
Dott, R. H., and Bourgeois, J. 1982. Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93:663680.2.0.CO;2>CrossRefGoogle Scholar
Fedonkin, M. A. 1981. Belomorskya biota venda (The Vendian White Sea biota). Akademiya Nauk SSSR, Trudy, 342, 100 p.Google Scholar
Fedonkin, M. A. 1983. Besskeletnaya fauna Podol'skogo Pridnestrov'ya (Nonskeletal fauna of Podolia [Dneister River Valley]), p. 128139. In Velikanov, V. A., Assejava, E. A., and Fedonkin, M. A., Vend Ukrainy (The Vendian of the Ukraine). Naukova Dumka, Kiev.Google Scholar
Fedonkin, M. A. 1990. Paleoichnology of Vendian Metazoa, p. 121125. In Sokolov, B. S. and Iwanoski, A. B. (eds.), The Vendian System, 1, Paleontology, Springer-Verlag, New York.Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and the early evolution of Metazoa, p. 87129. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa, Plenum Press, New York.CrossRefGoogle Scholar
Ford, T. D. 1958. Pre-Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society, 31:211217.CrossRefGoogle Scholar
Ford, T. D. 1963. The Pre-Cambrian fossils of Charnwood Forest. Transactions of the Leicestershire Literary and Philosophical Society, 57:5762.Google Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G., and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Germs, G. J. B. 1972. The stratigraphy and paleontology of the lower Nama Group, South West Africa. University of Cape Town, Department of Geology, Precambrian Research Unit Bulletin, 12, 250 p.Google Scholar
Germs, G. J. B. 1973a. A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa. Lethaia, 6:110.CrossRefGoogle Scholar
Germs, G. J. B. 1973b. Possible sprigginid worm and a new trace fossil from the Nama Group, South West Africa. Geology, 1:6970.2.0.CO;2>CrossRefGoogle Scholar
Germs, G. J. B. 1983. Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa/Namibia. Geological Society of South Africa Special Publication, 11:89114.Google Scholar
Germs, G. J. B. 1995. The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology. Precambrian Research, 73:137152.CrossRefGoogle Scholar
Gibson, G. G., Teeter, S. A., and Fedonkin, M. A. 1984. Ediacarian fossils from the Carolina Slate Belt, Stanly County, North Carolina. Geology, 12:387390.2.0.CO;2>CrossRefGoogle Scholar
Glaessner, M. F. 1959. Precambrian Coelenterata from Australia, Africa and England. Nature, 183:14721473.CrossRefGoogle Scholar
Glaessner, M. F. 1963. Zur Kenntnis der Nama-Fossilien Südwest–Afrikas. Annales Naturhistorie Museum, Wien, 66:113120.Google Scholar
Glaessner, M. F. 1979. Precambrian, p. A79A118. In Robinson, R.A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part A, Introduction. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge University Press, Cambridge, 244 p.Google Scholar
Glaessner, M. F., and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Paleontology, 9:599628.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.CrossRefGoogle Scholar
Gürich, G. 1929. Die ältesten Fossilien Südafrikas. Zeitschrift für Praktische Geologie, 37:8586.Google Scholar
Gürich, G. 1993. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Paläontologische Zeitschrift, 15:137154.CrossRefGoogle Scholar
Hahn, G., and Pflug, H. D. 1988. Polypenartige Organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. Geologica et Palaeontologica, 19:18.Google Scholar
Hofmann, H. J. 1988. An alternative explanation of the Ediacaran (Precambrian) chondrophore Chondroplon Wade. Alcheringa, 12:315318.CrossRefGoogle Scholar
Hofmann, H. J., Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran remains from inter-tillite beds in northwestern Canada. Geology, 18:11991202.2.3.CO;2>CrossRefGoogle Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology, 11:336355.CrossRefGoogle Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa, Plenum Press, New York.CrossRefGoogle Scholar
Jenkins, R. J. F. 1995. The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research, 73:5169.CrossRefGoogle Scholar
Jenkins, R. J. F., and Gehling, J. G. 1978. A review of the frond-like fossils of the Ediacara assemblage. Records of the South Australia Museum, 17:347359.Google Scholar
Keller, B. M., Menner, V. V., Stepanov, V. A., and Chumakov, N. M. 1974. Novye nakhodki Metazoa v vendomii Russkoy platformy [New discoveries of Metazoa in the Vendian of the Russian Platform]. Izvestiya Akademiya Nauk SSSR, Serii Geologischeskaya, 1974(12):130134.Google Scholar
Knoll, A. H., and Walter, M. R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356:673678.CrossRefGoogle ScholarPubMed
McMenamin, M. A. S. 1986. The Garden of Ediacara. Palaios, 1:178182.CrossRefGoogle Scholar
Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology, 33:945980.Google Scholar
Narbonne, G. M., Kaufman, A. J., and Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America Bulletin, 106:12811292.2.3.CO;2>CrossRefGoogle ScholarPubMed
Pflug, H. D. 1966. Neue Fossilreste aus den Nama-Schichten in Südwest-Afrika. Paläontologische Zeitschrift, 40:1425.CrossRefGoogle Scholar
Pflug, H. D. 1970a. Zur fauna der Nama-Schichten in Südwest-Afrika, I. Pteridinia, Bau und systematische Zugehörigkeit. Palaeontographica, A 134:226262.Google Scholar
Pflug, H. D. 1970b. Zur fauna der Nama-Schichten in Südwest-Afrika, II. Rangeidae, Bau und systematische Zugehörigkeit. Palaeontographica, A135:198231.Google Scholar
Pflug, H. D. 1972. Zur fauna der Nama-Schichten in Südwest-Afrika, III. Erniettomorpha, Bau und systematische Zugehörigkeit. Palaeontographica, A139:134170.Google Scholar
Pflug, H. D. 1973. Zur fauna der Nama-Schichten in Südwest-Afrika, IV. Microskopische Anatomie der Petalo-organismen. Palaeontographica, A144:166202.Google Scholar
Reineck, H. E., and Singh, I. B. 1980. Depositional Sedimentary Environments, Springer Verlag, New York, 439 p.CrossRefGoogle Scholar
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology, 20:523544.CrossRefGoogle Scholar
Richter, R. 1955. Die ältesten Fossilien Süd-Afrikas. Senckenbergiana Lethaea, 36:243289.Google Scholar
Runnegar, B. 1982. Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa, 6:223239.CrossRefGoogle Scholar
Runnegar, B. 1992. Proterozoic fossils of soft-bodied metazoans (Ediacara faunas), p. 9991007. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Runnegar, B. 1995. Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna”. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195:303318.CrossRefGoogle Scholar
Runnegar, B. 1996. Paleontology and biostratigraphy of the Nama Group, southern Namibia: Proterozoic prelude to the Cambrian explosion. Geological Society of America Abstracts with Programs, 28(7):A53.Google Scholar
Runnegar, B., and Fedonkin, M. A. 1992. Proterozoic metazoan body fossils, p. 369388. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Saylor, B. Z. and Grotzinger, J. P. 1997. Reconstruction of important Proterozoic-Cambrian boundary exposures through the recognition of thrust deformation in the Nama Group of southern Namibia. Communications of the Geological Survey of Namibia, in pressGoogle Scholar
Saylor, B. Z. and Grotzinger., J. P., and Germs, G. J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwest Namibia. Precambrian Research, 73:153171.CrossRefGoogle Scholar
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F. 1997. The partitioning of terminal Proterozoic time: constraints from Namibia, Journal of Sedimentary Research, in press.Google Scholar
Seilacher, A. 1964. Sedimentological classification and nomenclature of trace fossils. Sedimentology, 3:253256.Google Scholar
Seilacher, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Seilacher, A. 1989. Vendozoa: organismic constructions in the Proterozoic biosphere. Lethaia, 22:229239.CrossRefGoogle Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost construction of Precambrian evolution. Journal of the Geological Society, London, 149:607613.CrossRefGoogle Scholar
St. Jean, J. 1973. A new Cambrian trilobite from the Piedmont of North Carolina. American Journal of Science, 273-A:196216.Google Scholar
Stanley, G. D. 1986. Chondrophorine hydrozoans as problematic fossils, p. 6886. In Hoffman, A. and Nitecki, M H. (eds.), Problematic Fossil Taxa, Oxford University Press, New York.Google Scholar
Valentine, J. W. 1992. Dickinsonia as a polypoid organism. Paleobiology, 18:378382.CrossRefGoogle Scholar
Wade, M. 1968. Preservation of soft-bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia, 1:238267.CrossRefGoogle Scholar
Wade, M. 1971. Bilateral Precambrian chondrophores from the Ediacara fauna, South Australia. Proceedings of the Royal Society of Victoria, 84:183188.Google Scholar
Wade, M. 1972. Dickinsonia, polychaete worms from the late Precambrian Ediacara fauna, South Australia. Memoirs of the Queensland Museum, 16:171190.Google Scholar
Yochelson, E. L., Sturmer, W., and Stanley, G. D. 1983. Plectodiscus discoides (Rauff): a redescription of a chondrophorine from the Early Devonian Hunsrück Slate, West Germany. Paläontologische Zeitschrift, 37:3968.CrossRefGoogle Scholar
Zhuravlev, A. Yu. 1993. Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190:299314.Google Scholar