Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-06T18:34:52.430Z Has data issue: false hasContentIssue false

Guiding-centre orbit-following simulations of charge exchange loss of NBI ions with the finite Larmor radius effect

Published online by Cambridge University Press:  29 November 2023

Yingfeng Xu
Affiliation:
College of Science, Donghua University, Shanghai 201620, PR China Member of Magnetic Confinement Fusion Research Centre, Ministry of Education, Donghua University, Shanghai 201620, PR China
Fuqiong Wang*
Affiliation:
College of Science, Donghua University, Shanghai 201620, PR China Member of Magnetic Confinement Fusion Research Centre, Ministry of Education, Donghua University, Shanghai 201620, PR China
Yongliang Li
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Fangchuan Zhong
Affiliation:
College of Science, Donghua University, Shanghai 201620, PR China Member of Magnetic Confinement Fusion Research Centre, Ministry of Education, Donghua University, Shanghai 201620, PR China
*
Email address for correspondence: wangfq@dhu.edu.cn

Abstract

Guiding-centre orbit-following simulations of the charge exchange (CX) loss of neutral beam injection (NBI) ions are presented. The finite Larmor radius (FLR) effect in the fast ion–neutral collision can be included in guiding-centre orbit-following simulations by using the gyroaverage method. It is proved that the neutralization probability of fast ions computed by using the gyroaverage method in the guiding-centre orbit simulation is roughly the same as that computed in the full-orbit simulation when the time step in the guiding-centre simulation is the order of the gyroperiod. The CX losses of NBI fast ions for two NBIs in the EAST tokamak have been simulated by the guiding-centre orbit-following code GYCAVA, and the FLR effect in the fast ion–neutral collision on CX losses has been numerically studied. The CX effect of the fast ion–neutral collision can significantly enhance NBI ion losses on EAST. The FLR effect in the fast ion–neutral collision can enhance the CX loss. Vertical asymmetry of localized heat loads induced by CX losses is found, which is related to the FLR effect of fast ions and the strong radial gradient of the neutral density near the plasma edge. Heat loads induced by CX losses are localized in the regions near the poloidal angle $\theta =-60^\circ$, because the likelihood of exchanging charge is the largest at gyrophase $\xi ={\rm \pi}$, and this leads to fast downwards moving neutrals. Fast ion loss fractions induced by CX increase with the neutral density increasing.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boozer, A.H. & Kuo-Petravic, G. 1981 Monte Carlo evaluation of transport coefficients. Phys. Fluids 24 (5), 851859.CrossRefGoogle Scholar
Brizard, A.J. & Hahm, T.S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.CrossRefGoogle Scholar
Carreras, B.A., Owen, L.W., Maingi, R., Mioduszewski, P.K., Carlstrom, T.N. & Groebner, R.J. 1998 Effect of edge neutrals on the low-to-high confinement transition threshold in the DIII-D tokamak. Phys. Plasmas 5 (7), 26232636.CrossRefGoogle Scholar
Colchin, R.J., Maingi, R., Fenstermacher, M.E., Carlstrom, T.N., Isler, R.C., Owen, L.W. & Groebner, R.J. 2000 Measurement of neutral density near the X point in the DIII-D tokamak. Nucl. Fusion 40 (2), 175.CrossRefGoogle Scholar
Dnestrovskij, Y.N., Lysenko, S. & Kislyakov, A. 1979 Recombination-induced neutral particle flux in tokamaks. Nucl. Fusion 19 (3), 293299.CrossRefGoogle Scholar
Fasoli, A., Gormenzano, C., Berk, H.L., Breizman, B., Briguglio, S., Darrow, D.S., Gorelenkov, N., Heidbrink, W.W., Jaun, A., Konovalov, S.V., et al. 2007 Chapter 5: Physics of energetic ions. Nucl. Fusion 47, S264S284.CrossRefGoogle Scholar
Frieman, E.A. & Chen, L. 1982 Non-linear gyrokinetic equations for low-frequency electromagnetic-waves in general plasma equilibria. Phys. Fluids 25, 502.CrossRefGoogle Scholar
Goldston, R.J., McCune, D.C., Towner, H.H., Davis, S.L., Hawryluk, R.J. & Schmidt, G.L. 1981 New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks. J. Comput. Phys. 43 (1), 6178.CrossRefGoogle Scholar
Gorelenkov, N.N., Pinches, S.D. & Toi, K. 2014 Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54 (12), 125001.CrossRefGoogle Scholar
Heidbrink, W.W. & Sadler, G.J. 1994 The behavior of fast ions in tokamak experiments. Nucl. Fusion 34, 535615.CrossRefGoogle Scholar
Hirvijoki, E., Asunta, O., Koskela, T., Kurki-Suonio, T., Miettunen, J., Sipilä, S., Snicker, A. & Äkäslompolo, S. 2014 ASCOT: Solving the kinetic equation of minority particle species in tokamak plasmas. Comput. Phys. Commun. 185 (4), 13101321.CrossRefGoogle Scholar
Hu, Y., Xu, Y., Hao, B., Li, G., He, K., Sun, Y., Li, L., Wang, J., Huang, J., Ye, L., et al. 2021 Effects of resonant magnetic perturbations on neutral beam heating in a tokamak. Phys. Plasmas 28 (12), 122502.CrossRefGoogle Scholar
Jacquinot, J., Putvinski, S., Bosia, G., Fukuyama, A., Hemsworth, R., Konovalov, S., Nagashima, Y., Nevins, W.M., Rasumova, K., Romanelli, F., et al. 1999 Chapter 5: Physics of energetic ions. Nucl. Fusion 39, 24712494.Google Scholar
Janev, R.K. & Smith, J.J. 1993 Cross sections for collision processes of hydrogen atoms with electrons, protons and multiply charged ions. At. Plasma-Mater. Interact. Data Fusion 4, 1.Google Scholar
Jaulmes, F., Westerhof, E. & de Blank, H.J. 2014 Redistribution of fast ions during sawtooth reconnection. Nucl. Fusion 54 (10), 104013.CrossRefGoogle Scholar
Jaulmes, F., Zadvitskiy, G., Bogar, K., Imrisek, M., Hromadka, J., Cats, S.Y., Varju, J., Komm, M. & Panek, R. 2021 Modelling of charge-exchange induced NBI losses in the COMPASS upgrade tokamak. Nucl. Fusion 61 (4), 046012.CrossRefGoogle Scholar
Lao, L.L., Stjohn, H., Stambaugh, R.D., Kellman, A.G. & Pfeiffer, W. 1985 Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25, 16111622.CrossRefGoogle Scholar
Li, Y.L., Xu, G.S., Wu, Z.W., Zhang, B., Zhang, L., Yang, X.D., Chen, M.W., Zhang, T., Liu, H.Q., Wan, B.N., et al. 2018 Hot spots induced by LHCD in the shadow of antenna limiters in the EAST tokamak. Phys. Plasmas 25 (8), 082503.CrossRefGoogle Scholar
McClements, K.G., Tani, K., Akers, R.J., Liu, Y.Q., Shinohara, K., Tsutsui, H. & Tsuji-Iio, S. 2018 The effects of resonant magnetic perturbations and charge-exchange reactions on fast ion confinement and neutron emission in the Mega Amp Spherical Tokamak. Plasma Phys. Control. Fusion 60 (9), 095005.CrossRefGoogle Scholar
Ollus, P., Akers, R., Colling, B., El-Haroun, H., Keeling, D., Kurki-Suonio, T., Sharma, R., Snicker, A., Varje, J., the MAST-U team, et al. 2022 Simulating the impact of charge exchange on beam ions in MAST-U. Plasma Phys. Control. Fusion 64 (3), 035014.CrossRefGoogle Scholar
Pankin, A., Bateman, G., Budny, R., Kritz, A., McCune, D., Polevoi, A. & Voitsekhovitch, I. 2004 a Numerical techniques used in neutral beam injection modules. Comput. Phys. Commun. 164 (1–3), 421427.CrossRefGoogle Scholar
Pankin, A., McCune, D., Andre, R., Bateman, G. & Kritz, A. 2004 b The tokamak Monte Carlo fast ion module NUBEAM in the national transport code collaboration library. Comput. Phys. Commun. 159 (3), 157184.CrossRefGoogle Scholar
Pinches, S.D., Chapman, I.T., Lauber, P.W., Oliver, H.J.C., Sharapov, S.E., Shinohara, K. & Tani, K. 2015 Energetic ions in ITER plasmas. Phys. Plasmas 22, 021807.CrossRefGoogle Scholar
Stangeby, P. & McCracken, G. 1990 Plasma boundary phenomena in tokamaks. Nucl. Fusion 30 (7), 12251379.CrossRefGoogle Scholar
Stotler, D.P., Scotti, F., Bell, R.E., Diallo, A., LeBlanc, B.P., Podestà, M., Roquemore, A.L. & Ross, P.W. 2015 Midplane neutral density profiles in the national spherical torus experiment. Phys. Plasmas 22 (8), 082506.CrossRefGoogle Scholar
Tani, K., Shinohara, K., Oikawa, T., Tsutsui, H., McClements, K.G., Akers, R.J., Liu, Y.Q., Suzuki, M., Ide, S., Kusama, Y., et al. 2016 Application of a non-steady-state orbit-following Monte-Carlo code to neutron modeling in the MAST spherical tokamak. Plasma Phys. Control. Fusion 58 (10), 105005.CrossRefGoogle Scholar
Tournianski, M.R., Akers, R.J., Carolan, P.G. & Keeling, D.L. 2005 Anisotropic fast neutral particle spectra in the MAST spherical tokamak. Plasma Phys. Control. Fusion 47 (5), 671.CrossRefGoogle Scholar
Viezzer, E., Pütterich, T., Dux, R., Kallenbach, A. & the ASDEX Upgrade Team 2011 Investigation of passive edge emission in charge exchange spectra at the ASDEX Upgrade tokamak. Plasma Phys. Control. Fusion 53 (3), 035002.CrossRefGoogle Scholar
Wang, J., Wang, J., Wu, B. & Hu, C. 2016 Simulation analysis of charge-exchange losses during neutral beam injection on EAST. J. Fusion Energy 35 (2), 365369.Google Scholar
Xu, X., Xu, Y., Zhang, X. & Hu, Y. 2021 Simulations of the radial electric field induced by neutral beam injection in a tokamak. Nucl. Fusion 61 (8), 086002.CrossRefGoogle Scholar
Xu, Y., Guo, W., Hu, Y., Ye, L., Xiao, X. & Wang, S. 2019 Monte Carlo orbit-following simulations including the finite Larmor radius effect based on a phase-space coordinate transform method. Comput. Phys. Commun. 244, 4048.CrossRefGoogle Scholar
XU, Y., HU, Y., ZHANG, X., XU, X., YE, L., XIAO, X. & ZHENG, Z. 2021 Simulations of NBI fast ion loss in the presence of toroidal field ripple on EAST. Plasma Sci. Technol. 23 (9), 095102.CrossRefGoogle Scholar
Xu, Y., Li, L., Hu, Y., Liu, Y., Guo, W., Ye, L. & Xiao, X. 2020 Numerical simulations of NBI fast ion loss with RMPs on the EAST tokamak. Nucl. Fusion 60 (8), 086013.CrossRefGoogle Scholar
Xu, Y., Zhang, D., Chen, J. & Zhong, F. 2022 Simulations of energetic alpha particle loss in the presence of toroidal field ripple in the CFETR tokamak. Plasma Sci. Technol. 24 (10), 105101.CrossRefGoogle Scholar
Zhang, L., Xu, G., Ding, S., Gao, W., Wu, Z., Chen, Y., Huang, J., Liu, X., Zang, Q., Chang, J., et al. 2011 Estimation of neutral density in edge plasma with double null configuration in EAST. Plasma Sci. Technol. 13 (4), 431434.CrossRefGoogle Scholar