Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-10T03:45:20.940Z Has data issue: false hasContentIssue false

HORN PROBLEM FOR QUASI-HERMITIAN LIE GROUPS

Published online by Cambridge University Press:  26 May 2022

Paul-Emile Paradan*
Affiliation:
IMAG, Univ Montpellier, CNRS

Abstract

In this paper, we prove some convexity results associated to orbit projection of noncompact real reductive Lie groups.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atiyah, M.F., ‘Convexity and commuting Hamiltonians’, Bull. London Math. Soc. 14(1) (1982), 115.CrossRefGoogle Scholar
Belkale, P., ‘Geometric proofs of Horn and saturation conjectures’, Journal of Algebraic Geometry 15(1) (2006), 133173.CrossRefGoogle Scholar
Belkale, P. and Kumar, S., ‘Eigenvalue problem and a new product in cohomology of flag varieties’, Invent. Math. 166(1) (2006), 185228.CrossRefGoogle Scholar
Berenstein, A. and Sjamaar, R., ‘Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion’, Journal of the A.M.S. 13(2) (2000), 433466.Google Scholar
Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology, Vol. 82. (New York, Springer, 1982), xiv+-331.10.1007/978-1-4757-3951-0CrossRefGoogle Scholar
Deltour, G., ‘Propriétés symplectiques et hamiltoniennes des orbites coadjointes holomorphes’, Ph.D. thesis, University Montpellier 2, 2010, arXiv: 1101.3849.Google Scholar
Deltour, G., ‘Kirwan polyhedron of holomorphic coadjoint orbits’, Transformation Groups 17(2) (2012), 351392.CrossRefGoogle Scholar
Deltour, G., ‘On a generalization of a theorem of McDuff’, J. Differ. Geom. 93(3) (2013), 379400.10.4310/jdg/1361844939CrossRefGoogle Scholar
Eshmatov, A. and Foth, P., ‘On sums of admissible coadjoint orbits’, Proceedings of the A.M.S. 142 (2014), 727735.CrossRefGoogle Scholar
Guillemin, V. and Sternberg, S., ‘Convexity properties of the moment mapping’, Invent. Math. 67(3) (1982), 491513.CrossRefGoogle Scholar
Hall, B., ‘Phase space bounds for quantum mechanics on a compact Lie group’, Commun. Math. Phys. 184(1) (1997), 233250.CrossRefGoogle Scholar
Heckman, G., ‘Projection of orbits and asymptotic behavior of multiplicities for compact connected Lie groups’, Invent. Math. 67(2) (1982), 333356.10.1007/BF01393821CrossRefGoogle Scholar
Hilgert, J., Neeb, K.-H. and Plank, W., ‘Symplectic convexity theorems and coadjoint orbits’, Compositio Math. 94(2) (1994), 129180.Google Scholar
Horn, A., ‘Eigenvalues of sums of Hermitian matrices’, Pacific J. Math. 12(1) (1962), 225241.10.2140/pjm.1962.12.225CrossRefGoogle Scholar
Jakobsen, H.P. and Vergne, M., ‘Restrictions and expansions of holomorphic representations’, J. Functional Analysis 34(1) (1979), 2953.CrossRefGoogle Scholar
Kirwan, F.C., ‘Convexity properties of the moment mapping III’, Invent. Math. 77(3) (1984), 547552.CrossRefGoogle Scholar
Klyachko, A., ‘Stable bundles, representation theory and Hermitian operators’, Selecta Mathematica, New Series 4(3) (1998), 419445.CrossRefGoogle Scholar
Knapp, A. W., Lie Groups beyond an Introduction, Progress in Math. 140, (Boston, Birkhäuser, Springer, 1996).10.1007/978-1-4757-2453-0CrossRefGoogle Scholar
Knutson, A. and Tao, T., ‘The honeycomb model of $G{L}_n\left(\mathbb{C}\right)$ tensor products I: Proof of the saturation conjecture’, Journal of the A.M.S. 12(4) (1999), 10551090.Google Scholar
Knutson, A., Tao, T. and Woodward, C., ‘The honeycomb model of $G{L}_n\left(\mathbb{C}\right)$ tensor products II: Puzzles determine facets of the Littlewood–Richardson cone’, Journal of the A.M.S. 17(1) (2004), 1948.Google Scholar
Kobayashi, T., ‘Discrete series representations for the orbit spaces arising from two involutions of real reductive lie groups’, J. Functional Analysis 152(1) (1998), 100135.CrossRefGoogle Scholar
Lerman, E., Meinrenken, E., Tolman, S. and Woodward, C., ‘Non-abelian convexity by symplectic cuts’, Topology 37(2) (1998), 245259.CrossRefGoogle Scholar
Loizides, Y., ‘Quasi-polynomials and the singular [Q, R] = 0 theorem’, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 15 (2019).Google Scholar
Martens, S., ‘The characters of the holomorphic discrete series’, Proc. Nat. Acad. Sci. USA 72(9) (1975), 32753276.CrossRefGoogle ScholarPubMed
Montagard, P.-L. and Ressayre, N., ‘Sur des faces du cône de Littlewood-Richardson généralisé’, Bulletin S.M.F. 135(3) (2007), 343365.Google Scholar
McDuff, D., ‘The symplectic structure of Kähler manifolds of nonpositive curvature’, J. Differential Geom. 28(3) (1988), 467475.Google Scholar
Mostow, G. D., ‘Some new decomposition theorems for semi-simple groups’, Memoirs of the A.M.S. 14 (1955), 3154.Google Scholar
Paneitz, S.M., ‘Determination of invariant convex cones in simple Lie algebras’, Arkiv för Matematik 21(1) (1983), 217228.CrossRefGoogle Scholar
Paradan, P.-E., ‘Multiplicities of the discrete series’, Preprint, 2008, arXiv: 0812.0059.Google Scholar
Paradan, P.-E., ‘Wall-crossing formulas in Hamiltonian geometry’, In Geometric Aspects of Analysis and Mechanics. (Boston, Birkhäuser, 2011), 295343.CrossRefGoogle Scholar
Paradan, P.-E., ‘Quantization commutes with reduction in the non-compact setting: the case of holomorphic discrete series’, Journal of the E.M.S. 17(4) (2015), 955990.Google Scholar
Paradan, P.-E., ‘Ressayre’s pairs in the Kähler setting’, International Journal of Mathematics 32(12) (2021), 38. doi: 10.1142/S0129167X21400176.CrossRefGoogle Scholar
Paradan, P.-E., ‘ $\mathrm{Horn}\left(p,q\right)$ ’, Preprint, 2020, arXiv: 2006.08989.Google Scholar
Paradan, P.-E. and Vergne, M., ‘Witten non abelian localization for equivariant K-theory, and the [Q,R]=0 theorem’, Memoirs of the A.M.S. 261 (2019), 35.Google Scholar
Sjamaar, R., ‘Convexity properties of the moment mapping re-examined’, Advances in Math. 138(1) (1998), 4691.CrossRefGoogle Scholar
Ressayre, N., ‘Geometric invariant theory and the generalized eigenvalue problem’, Invent. math. 180(2) (2010), 389441.CrossRefGoogle Scholar
Vergne, M., ‘Multiplicity formula for geometric quantization, Part I, Part II, and Part III’, Duke Math. J. 82(1) (1996), 143179, 181–194 and 637–652.Google Scholar
Weinstein, A., ‘Poisson geometry of discrete series orbits and momentum convexity for noncompact group actions’, Lett. Math. Phys. 56(1) (2001), 1730.CrossRefGoogle Scholar