Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T19:56:24.735Z Has data issue: false hasContentIssue false

PONTRYAGIN DUALITY FOR VARIETIES OVER p-ADIC FIELDS

Published online by Cambridge University Press:  28 September 2022

Thomas H. Geisser*
Affiliation:
Department of Mathematics, Rikkyo University, Toshima, 171-8501, Tokyo, Japan
Baptiste Morin
Affiliation:
Department of Mathematics, Université de Bordeaux, 351, Cours de la Libération, F 33405 Talence Cedex, Bordeaux, France (Baptiste.Morin@math.u-bordeaux.fr)

Abstract

We define cohomological complexes of locally compact abelian groups associated with varieties over p-adic fields and prove a duality theorem under some assumption. Our duality takes the form of Pontryagin duality between locally compact motivic cohomology groups.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Jong, A. J., Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 5193.CrossRefGoogle Scholar
Flach, M. and Morin, B., Weil-étale cohomology and Zeta-values of proper regular arithmetic schemes, Doc. Math. 23 (2018), 14251560.CrossRefGoogle Scholar
Fontaine, J. M. and Messing, W., p-adic periods and p-adic étale cohomology, Cont. Math. 67 (1987), 179207.CrossRefGoogle Scholar
Fujiwara, K., A proof of the absolute purity conjecture (after Gabber) , in Proceedings of the Symposium held in Hotaka, July 20–30, 2000. Edited by S. Usui, M. Green, L. Illusie, K. Kato, E. Looijenga, S. Mukai and S. Saito. Adv. Stud. Pure Math. 36, pp. 153183 (Math. Soc. Japan, Tokyo, 2002).Google Scholar
Gabber, O., Sur la torsion dans la cohomologie l-adique d’une variété, C. R. Acad. Sci. Paris 297 (1983), 179182.Google Scholar
Geisser, T., Tate’s conjecture, algebraic cycles and rational K-theory in characteristic p, K-Theory 13(2) (1998), 100122.CrossRefGoogle Scholar
Geisser, T., Motivic cohomology over Dedekind rings, Math. Z. 248 (4) (2004), 773794.CrossRefGoogle Scholar
Geisser, T., Arithmetic cohomology over finite fields and special values of $\unicode{x3b6}$ -functions, Duke Math. J. 133 (1) (2006), 2757.CrossRefGoogle Scholar
Geisser, T., Duality via cycle complexes, Ann. of Math. (2) 172(2) (2010), 10951126. CrossRefGoogle Scholar
Geisser, T., Arithmetic homology and an integral version of Kato’s conjecture, J. Reine Angew. Math. 644 (2010), 122.CrossRefGoogle Scholar
Geisser, T., Duality for $\mathbb{Z}$ -constructible sheaves on curves over finite fields, Documenta Mathematica 17 (2012), 9891002.CrossRefGoogle Scholar
Geisser, T. H., Duality of integral étale motivic cohomology, in K-Theory Proceedings of the International Colloquium, Mumbai, 2016, pp. 195–209. Edited by V. Srinivas, S. K. Roushon, R. A. Rao, A. J. Parameswaran and A. Krishna. Published for the Tata Institute of Fundamental Research and distributed by American Mathematical Society (Hindustan Book Agency, New Delhi, 2018).Google Scholar
Geisser, T. H. and Morin, B., On the kernel of the Brauer-Manin pairing, J. Number Theory 238 (2022), 444463.CrossRefGoogle Scholar
Hoffmann, N. and Spitzweck, M., Homological algebra with locally compact abelian groups, Adv. Math. 212 (2) (2007), 504524.CrossRefGoogle Scholar
Karpuk, D., Weil-étale cohomology of curves over p-adic fields, J. Algebra 416 (2014), 122138.CrossRefGoogle Scholar
Lichtenbaum, S., The Weil-étale topology on schemes over finite fields, Compositio Math. 141(3) (2005), 689702.CrossRefGoogle Scholar
Lurie, J. Higher topos theory, in Annals of Mathematics Studies 170, pp. xviii+925 (Princeton University Press, Princeton, NJ, 2009). ISBN: 978-0-691-14049-0; 0-691-14049-9.CrossRefGoogle Scholar
Lurie, J., Higher algebra, Available at https://www.math.ias.edu/~lurie/papers/HA.pdf.Google Scholar
Nekovar, J. and Niziol, W., Syntomic cohomology and regulators for varieties over p-adic fields, Algebra and Number Theory 10 (2016), 16951790.CrossRefGoogle Scholar
Nikolaus, T. and Scholze, P., On topological cyclic homology, Acta Math. 221(2) (2018), 203409.CrossRefGoogle Scholar
Sato, K., $p$ -adic étale Tate twists and arithmetic duality, Ann. Sci. École Norm. Sup. (4) 40 (4) (2007), 519588.CrossRefGoogle Scholar
Sato, K., Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces , J. Number Theory 227 (2021), 166234.CrossRefGoogle Scholar
Schneiders, J.-P., Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.), 76 (1999), 1134.Google Scholar
Suh, J., Symmetry and parity in Frobenius action on cohomology, Compos. Math. 148 (1) (2012), 295303.CrossRefGoogle Scholar