Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-31T06:00:46.329Z Has data issue: false hasContentIssue false

Nutritional vulnerability of early zoeal stages of the ornamental shrimp Lysmata ankeri (Decapoda: Caridea)

Published online by Cambridge University Press:  22 April 2024

Samara de P. Barros-Alves*
Affiliation:
Departamento de Ciências Agrárias e Naturais (DECAN), Universidade do Estado de Minas Gerais (UEMG), Unidade de Ituiutaba, Ituiutaba, Minas Gerais, Brazil
Ariádine Cristine de Almeida
Affiliation:
Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais (PPGECO), Laboratório de Ecologia de Ecossistemas Aquáticos (LEEA), Universidade Federal de Uberlândia (UFU), Campus Umuarama, Uberlândia, Minas Gerais, Brazil
Maria Lucia Negreiros-Fransozo
Affiliation:
Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
Douglas Fernandes Rodrigues Alves
Affiliation:
Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais (PPGECO), Laboratório de Ecologia de Ecossistemas Aquáticos (LEEA), Universidade Federal de Uberlândia (UFU), Campus Umuarama, Uberlândia, Minas Gerais, Brazil
*
Corresponding author: Samara de P. Barros-Alves; Email: barros_samara@hotmail.com

Abstract

The evaluation of the effects of early starvation and feeding on survival and growth in the early stages of the life cycle of ornamental marine caridean shrimp species is fundamental to establish adequate feeding protocols in their culture. In this study, we determine the nutritional vulnerability in the early larval stages of ornamental shrimp Lysmata ankeri exposed to different periods of starvation or feeding. The larvae were separated into three groups (zoea I-ZI, zoea II with ZI fed, and zoea II with ZI unfed) and subjected to two experiments: (1) point-of-no-return (PNR), comprising one or two days of initial starvation followed by feeding; and (2) point-of-reserve-saturation (PRS), comprising one or two days of initial feeding followed by starvation. Each experiment was still composed of two control groups: continuous feeding and continuous starvation. Larvae tolerated some periods of starvation, with a high PNR value (2.00) and low PRS (0.50). Longer periods of starvation influenced both growth and survival rates in zoea II stages. The nutritional vulnerability index for zoea I was 0.25, which represents a low dependence on food supply. In this study, it was observed that ornamental shrimp L. ankeri larvae hatch with energy reserves, presenting facultative primary lecithotrophy, in which they are able to moult from zoea I to zoea II using such reserves in the absence of food. In this sense, the early larvae stages (zoeas I and II) can tolerate a certain period of starvation, indicating the great potential of this species for aquaculture.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, AD, Alves, DFR, Barros-Alves, SP, Pescinelli, RA and Costa, RC (2023) Morphology of the early larval stages of Lysmata ankeri Rhyne & Lin, 2006 and Lysmata bahia Rhyne & Lin, 2006 (Caridea: Lysmatidae) and a review of the larval morphology of the early Lysmata stages. Zootaxa 5285, 4174.CrossRefGoogle Scholar
Alves, DFR, Barros-Alves, SP, Hirose, GL and Cobo, VJ (2015) Morphological remarks on the peppermint shrimp Lysmata ankeri (Decapoda, Hippolytidae): implications for species identification of the L. wurdemanni complex. Nauplius 23, 5358.CrossRefGoogle Scholar
Alves, DFR, López-Greco, LS, Barros-Alves, SP and Hirose, GL (2019) Sexual system, reproductive cycle and embryonic development of the red-striped shrimp Lysmata vittata, an invader in the western Atlantic Ocean. PLoS ONE 14, 118.CrossRefGoogle ScholarPubMed
Anger, K (1995) Starvation resistance in larvae of a semiterrestrial crab, Sesarma curacaoense (Decapoda: Grapsidae). Journal of Experimental Marine Biology and Ecology 187, 161174.CrossRefGoogle Scholar
Anger, K (2001) The Biology of Decapod Crustacean Larvae. Crustacean Issues, vol. 14. Rotterdam, Netherlands: A. A. Balkema Publishers.Google Scholar
Anger, K and Dawirs, R (1981) Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae). Helgoländer Wissenschaftliche Meeresuntersuchungen 34, 287311.CrossRefGoogle Scholar
Anger, K, Queiroga, H and Calado, R (2015) Larval development and behaviour strategies in Brachyura. In Castro, P, Davie, PJF, Guinot, D, Schram, FR and von Vaupel Klein, JC (eds), Treatise on Zoology – Anatomy, Taxonomy, Biology. The Crustacea. Volume 9 Part C-I Decapoda: Brachyura. London: Brill, pp. 317374.CrossRefGoogle Scholar
Barros-Alves, SP, Alves, DFR, Hirose, GL and Cobo, VJ (2016) New records of caridean shrimps, Lysmata ankeri and L. cf. intermedia, from southeast coast of Brazil. Marine Biodiversity Records 9, 34.CrossRefGoogle Scholar
Barros-Alves, SP, Alves, DFR, Antunes, M, López-Greco, LS and Negreiros-Fransozo, ML (2018) Nutritional vulnerability in zoeal stages of the yellowline arrow crab Stenorhynchus seticornis (Brachyura: Majoidea). Marine and Freshwater Research 69, 962970.CrossRefGoogle Scholar
Barros-Alves, SP, Almeida, AS, Almeida, AC, Costa, RC and Alves, DFR (2020) Nutritional vulnerability of early zoeal stages of the invasive shrimp Lysmata vittata (Decapoda: Caridea) in the Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom 100, 577584. https://doi.org/10.1017/S0025315420000405CrossRefGoogle Scholar
Bas, CC, Spivak, ED and Anger, K (2008) Variation in early developmental stages in two populations of an intertidal crab, Neohelice (Chasmagnathus) granulata. Helgoland Marine Research 62, 393401.CrossRefGoogle Scholar
Calado, R, Lin, J, Rhyne, AL, Araújo, R and Narciso, L (2003a) Marine ornamental decapods — popular, pricey, and poorly studied. Journal of Crustacean Biology 23, 963973.CrossRefGoogle Scholar
Calado, R, Narciso, L, Morais, S, Rhyne, AL and Lin, J (2003b) A rearing system for the culture of ornamental decapod crustacean larvae. Aquaculture 218, 329339.CrossRefGoogle Scholar
Calado, R, Figueiredo, J, Rosa, R, Nunes, ML and Narciso, L (2005a) Larval culture of Monaco shrimp Lysmata seticaudata (Decapoda: Hippolytidae): effect of temperature, rearing density and larval diet. Aquaculture 245, 221237.CrossRefGoogle Scholar
Calado, R, Conceição, LE and Dinis, MT (2005b) Early larval culture of marine ornamental decapods: getting it right from the start. In Hendry, CI, van Stappen, G, Wille, M and Sorgeloos, P (eds), Larvi'05 Fish & Shellfish Larviculture Symposium. Special Publication, vol. 36. Oostende: European Aquaculture Society, pp. 6770.Google Scholar
Calado, R, Vitorino, A, Dionísio, G and Dinis, MT (2007a) A recirculated maturation system for marine ornamental decapods. Aquaculture 263, 6874.CrossRefGoogle Scholar
Calado, R, Dionísio, G and Dinis, MT (2007b) Starvation resistance of early zoeal stages of marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae) from different habitats. Journal of Experimental Marine Biology and Ecology 351, 226233.CrossRefGoogle Scholar
Calado, R, Pimentel, T, Vitorino, A, Dionísio, G and Dinis, MT (2008a) Technical improvements of a rearing system for the culture of decapod crustacean larvae, with emphasis on marine ornamental species. Aquaculture 285, 264269.CrossRefGoogle Scholar
Calado, R, Dionísio, G, Bartilotti, C, Nunes, C, Santos, A and Dinis, MT (2008b) Importance of light and larval morphology in starvation resistance and feeding ability of newly hatched marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae). Aquaculture 283, 5663.CrossRefGoogle Scholar
Calado, R, Pimentel, T, Pochelon, P, Olaguer-Feliú, AO and Queiroga, H (2010) Effect of food deprivation in late larval development and early benthic life of temperate marine coastal and estuarine caridean shrimp. Journal of Experimental Marine Biology and Ecology 384, 107112.CrossRefGoogle Scholar
Calvo, NS, Tropea, C, Anger, K and López-Greco, LS (2012) Starvation resistance in juvenile freshwater crayfish. Aquatic Biology 16, 287297.CrossRefGoogle Scholar
Castille, FL, Samocha, TM, Lawrence, AL, He, H, Frelier, P and Jaenike, F (1993) Variability in growth and survival of early postlarval shrimp (Penaeus vannamei Boone 1931). Aquaculture 113, 6581.CrossRefGoogle Scholar
Chen, JY and Zeng, C (2021) The effects of live prey and greenwater on the early larval rearing of orchid dottyback Pseudochromis fridmani. Aquaculture 543, 737008.CrossRefGoogle Scholar
Chen, JY, Zeng, C, Jerry, DR and Cobcroft, JM (2019) Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Reviews in Aquaculture 12, 124. doi: 10.1111/raq.12394Google Scholar
Costa, JWP, Brito, TYS, Marques Neto, JCM, Abrunhosa, FA, Maciel, CMT and Maciel, CR (2021) Reproductive cycle and embryonic development of the ornamental shrimp Lysmata ankeri Rhyne and Lin, 2006. Aquaculture 543, 736994.CrossRefGoogle Scholar
Danilowicz, BS and Brown, CL (1992) Rearing methods for two damselfish species: Dascyllus albisella (Gill) and D. aruanus (L.). Aquaculture 106, 141149.CrossRefGoogle Scholar
Dhert, P, Rombaut, G, Suantika, G and Sorgeloos, P (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200, 129146.CrossRefGoogle Scholar
Dickson, MD, Behringer, DC and Baeza, JA (2020) Life history traits and reproductive performance of the caridean shrimp Lysmata boggessi, a heavily traded invertebrate in the marine aquarium industry. PeerJ 8, e8231.CrossRefGoogle ScholarPubMed
Espinosa-Magaña, A, Lozano-Álvarez, E and Briones-Fourzán, P (2017) Resistance to starvation of first-stage juveniles of the Caribbean spiny lobster. PeerJ 5, e2852.CrossRefGoogle ScholarPubMed
Espinoza, C, Guzmán, F, Bascur, M and Urzúa, Á (2016) Effect of starvation on the nutritional condition of early zoea larvae of the red squat lobster Pleuroncodes monodon (Decapoda, Munididae). Invertebrate Reproduction & Development 60, 152160.CrossRefGoogle Scholar
Figueiredo, J, Penha-Lopes, G, Narciso, L and Lin, J (2008) Effect of starvation during late megalopa stage of Mithraculus forceps (Brachyura: Majidae) on larval duration, synchronism of metamorphosis, survival to juvenile, and newly metamorphosed juvenile size. Aquaculture 274, 175180.CrossRefGoogle Scholar
Friedlander, AM (2001) Essential fish habitat and the effective design of marine reserves: application for marine ornamental fishes. Aquarium Sciences and Conservation 3, 135150.CrossRefGoogle Scholar
Garcia, LMB, Sayco, MJP and Aya, FA (2020) Point-of-no-return and delayed feeding mortalities in first-feeding larvae of the silver therapon Leiopotherapon plumbeus (Kner) (Teleostei: Terapontidae). Aquaculture Reports 16, 100288.CrossRefGoogle Scholar
Gasparini, JL, Floeter, SR, Ferreira, CEL and Sazima, I (2005) Marine ornamental trade in Brazil. Biodiversity and Conservation 14, 28832899.CrossRefGoogle Scholar
Gebauer, P, Paschke, K and Anger, K (2010) Seasonal variation in the nutritional vulnerability of first-stage larval porcelain crab, Petrolisthes laevigatus (Anomura: Porcellanidae) in southern Chile. Journal of Experimental Marine Biology and Ecology 386, 103112.CrossRefGoogle Scholar
Giménez, L (2002) Effects of prehatching salinity and initial larval biomass on survival and duration of development in the zoea 1 of the estuarine crab, Chasmagnathus granulata, under nutritional stress. Journal of Experimental Marine Biology and Ecology 270, 93110.CrossRefGoogle Scholar
Giménez, L and Torres, G (2002) Larval growth in the estuarine crab Chasmagnathus granulata: the importance of salinity experienced during embryonic development, and the initial larval biomass. Marine Biology 141, 877885.CrossRefGoogle Scholar
Giménez, L and Anger, K (2005) Effects of temporary food limitation on survival and development of brachyuran crab larvae. Journal of Plankton Research 27, 485494.CrossRefGoogle Scholar
Gregati, RA, Fransozo, V, López-Greco, LS and Negreiros-Fransozo, ML (2010) Reproductive cycle and ovarian development of the marine ornamental shrimp Stenopus hispidus in captivity. Aquaculture 306, 185190.CrossRefGoogle Scholar
Groover, EM, Alo, MM, Ramee, SW, Lipscomb, TN, Degidio, JMLA and DiMaggio, MA (2021) Development of early larviculture protocols for the melanurus wrasse Halichoeres melanurus. Aquaculture 530, 735682.CrossRefGoogle Scholar
Guerao, G, Simeó, CG, Anger, K, Urzúa, Á and Rotllant, G (2012) Nutritional vulnerability of early zoea larvae of the crab Maja brachydactyla (Brachyura, Majidae). Aquatic Biology 16, 253264.CrossRefGoogle Scholar
Guéron, R, Baeza, JA, Bochini, GL, Terossi, M and Almeida, AO (2023) Refining southwestern Atlantic peppermint shrimp biodiversity: description of a new species of Lysmata (Decapoda: Lysmatidae) using an integrative systematic approach. Journal of the Marine Biological Association of the United Kingdom 103, e42.CrossRefGoogle Scholar
Knowlton, RE (1974) Larval development processes and controlling factors in decapod Crustacea, with emphasis on Caridea. Thalassia Jugoslavica 10, 139158.Google Scholar
Leal, MC, Vaz, MCM, Puga, J, Rocha, RJM, Brown, C, Rosa, R and Calado, R (2015) Marine ornamental fish imports in the European Union: an economic perspective. Fish and Fisheries 17, 459468.CrossRefGoogle Scholar
Liddy, GC, Phillips, BF and Maguire, GB (2003) Survival and growth of instar 1 phyllosoma of the western rock lobster, Panulirus cygnus, starved before or after periods of feeding. Aquaculture International 11, 5367.CrossRefGoogle Scholar
Lukhaup, C (2002) Shells & pincers. Tropical Fish Hobbyist 51, 9094.Google Scholar
Mikami, S, Greenwood, JG and Gillespie, NC (1993) The effect of starvation and feeding regimes on survival, intermoult period and growth of cultured Panulirus japonicus and Thenus sp. phyllosomas (Decapoda, Panuliridae and Scyllaridae). Crustaceana 68, 160169.Google Scholar
Moe, MA Jr (2001) Culture of marine ornamentals: for love, for money and for science. In Cato, JC and Brown, CL (eds), Marine Ornamental Species: Collection, Culture and Conservation. Iowa, USA: Iowa State Press, pp. 128.Google Scholar
Murray, JM, Watson, GJ, Giangrande, A, Licciano, M and Bentley, MG (2012) Managing the marine aquarium trade: revealing the data gaps using ornamental polychaetes. PLoS ONE 7, e29543.CrossRefGoogle ScholarPubMed
Palmtag, MR (2017) The marine ornamental species trade. In Calado, R, Olivotto, I, Oliver, MP and Holt, GJ (eds), Marine Ornamental Species: Aquaculture. Chichester, UK: John Wiley & Sons Ltd., pp. 314.CrossRefGoogle Scholar
Pantaleão, JAF, Barros-Alves, SP, Tropea, C, Alves, DFR, Negreiros-Fransozo, ML and López-Greco, LS (2015) Nutritional vulnerability in early stages of the freshwater ornamental ‘red cherry shrimp’ Neocaridina davidi (Bouvier, 1904) (Caridea: Atyidae). Journal of Crustacean Biology 35, 676681.CrossRefGoogle Scholar
Paschke, KA, Gebauer, P, Buchhola, F and Anger, K (2004) Seasonal variation in starvation resistance of early larval North Sea shrimp Crangon crangon (Decapoda, Crangonidae). Marine Ecology Progress Series 279, 183191.CrossRefGoogle Scholar
Rhyne, AL and Lin, J (2006) A western peppermint shrimp complex: redescription of Lysmata wurdemanni (Gibbes), description of four new species and remarks on L. rathbunae Chace (Crustacea: Decapoda: Hippolytidae). Bulletin of Marine Science 79, 165204.Google Scholar
Rhyne, AL, Tlusty, MF, Schofield, PJ, Kaufman, L, Morris, JA Jr and Bruckner, AW (2012) Revealing the appetite of the marine aquarium fish trade: the volume and biodiversity of fish imported into the United States. PLoS ONE 7, e35808.CrossRefGoogle ScholarPubMed
Rhyne, AL, Tlusty, MF, Szczeback, JT and Holmberg, RJ (2017) Expanding our understanding of the trade in marine aquarium animals. PeerJ 5, e2949.CrossRefGoogle ScholarPubMed
Romero-Carvajal, A, Turnbull, MW and Baeza, JA (2018) Embryonic development in the peppermint shrimp, Lysmata boggessi (Caridea: Lysmatidae). Biology Bulletin 234, 165179.CrossRefGoogle ScholarPubMed
Simões, F, Ribeiro, F and Jones, DA (2002) Feeding early larval stages of fire shrimp Lysmata debelius (Caridea, Hippolytidae). Aquaculture International 10, 349360.CrossRefGoogle Scholar
Smith, KF, Behrens, MD, Max, LM and Daszak, P (2008) US drowning in unidentified fishes: scope, implications, and regulation of live fish import. Conservation Letters 1, 103109.CrossRefGoogle Scholar
Souza, AS, Simith, DJB and Abrunhosa, FA (2018) Impacts of nutritional stress on the survival and developmental time to metamorphosis in megalopa larvae of the exploited mangrove crab, Ucides cordatus (Ucididae). Marine Biology Research 14, 834845.CrossRefGoogle Scholar
Staton, J and Sulkin, S (1991) Nutritional requirements and starvation resistance in larvae of the brachyuran crabs Sesarma cinereum (Bosc) and S. reticulatum (Say). Journal of Experimental Marine Biology and Ecology 152, 271284.CrossRefGoogle Scholar
Stumpf, L, Calvo, NS, Pietrokovsky, S and López-Greco, LS (2010) Nutritional vulnerability and compensatory growth in early juveniles of the ‘red claw’ crayfish Cherax quadricarinatus. Aquaculture 304, 3441.CrossRefGoogle Scholar
Thessalou-Legaki, M, Peppa, A and Zacharaki, M (1999) Facultative lecithotrophy during larval development of the burrowing shrimp Callianassa tyrrhena. Marine Biology 133, 635642.CrossRefGoogle Scholar
Van Eynde, B, Vuylsteke, D, Christiaens, O, Cooreman, K, Smagghe, G and Delbare, D (2019) Improvements in larviculture of Crangon crangon as a step towards its commercial aquaculture. Aquaculture Research 50, 16581667. https://doi.org/10.1111/are.14048CrossRefGoogle Scholar
Wabnitz, C, Taylor, M, Green, E and Razak, T (2003) From Ocean to Aquarium. Cambridge: UNEP-WCMC.Google Scholar
Werner, U (2003) Shrimps, Crayfishes, and Crabs in the Freshwater Aquarium. Rodgau: Aqualog.Google Scholar
Wood, E (2001) Global advances in conservation and management of marine ornamental resources. Aquarium Science & Conservation 3, 6577.CrossRefGoogle Scholar
Zar, JH (2010) Biostatistical Analysis, 5th Edn. Upper Saddle River, NJ: Prentice-Hall.Google Scholar