Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-19T05:11:25.775Z Has data issue: false hasContentIssue false

Görtler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage

Published online by Cambridge University Press:  26 February 2010

Philip Hall
Affiliation:
Mathematics Department, Exeter University, Exeter, EX4 4QE
Get access

Abstract

Görtler vortices are thought to be the cause of transition in many fluid flows of practical importance. In this paper a review of the different stages of vortex growth is given. In the linear regime nonparallel effects completely govern this growth and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Gortler vortices are given; in particular vortices induced by free-stream perturbations impinging on the leading edge of the wall are considered. It is found that the most dangerous mode of this type can be isolated and its neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of O(l) wavelengths are given and compared with experimental observations. The agreement between theory and experiment is shown to be excellent up to the point where unsteady effects become important. For small wavelength vortices the nonlinear regime is of particular interest since a strongly nonlinear theory can be developed there. Here the vortices can be large enough to drive the mean state which then adjusts itself to make all modes neutral. The breakdown of this nonlinear state into a three-dimensional time dependent flow is also discussed.

Type
Research Article
Copyright
Copyright © University College London 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aihara, Y. (1961). Stability of compressible boundary-layers along a curved wall under Görtler type disturbances. Aero. Res. Inst. Tokyo. Rep., 362, 31.Google Scholar
Aihara, Y. (1962). Transition in incompressible boundary-layer along a concave wall. Bull. Aero. Res. lnst. Tokyo Univ., 3.Google Scholar
Aihara, Y. (1976). Nonlinear analysis of Görtler vortices. Phys. Fluids, 19, 1655.CrossRefGoogle Scholar
Aihara, Y. and Kohama, H. (1981). Secondary instability of Gortler vortices: Formation of periodic three-dimensional coherent structure. Trans. Japan Soc. Aero. Sci., 24, 78.Google Scholar
Allison, D. O. and Dagenhart, J. R. (1987). Two experimental supercritical laminar flow control swept-wings. NASA TM 87073.Google Scholar
Baskaran, V. and Bradshaw, P. (1988). Decay of spanwise inhomogeneities in a three-dimensional turbulent boundary layer over an infinite swept concave wall. Experiments in Fluids, 6, 487.CrossRefGoogle Scholar
Bassom, A. P. and Hall, P. (1988). On the generation of mean flows by the interaction of Görtler vortices and Tollmien-Schlichting waves in curved channel flows. ICASE Report 88-43 and to appear in Studies in Applied Maths.Google Scholar
Bippes, H. (1972). Experimental study of the laminar-turbulent transition of a concave wall in a parallel-flow. NASA TM 75243.Google Scholar
Bippes, H. and Görtler, H. (1972). Dreidimensionale Störungen in der Grenzschict an einer konkaven wand. Acta Mechanica, 14, 251.CrossRefGoogle Scholar
Bouthier, M. (1973). Stabilité linéaire des écoulements presque parallèles: Partie II. La Couche Limite de Blasius. J. Mecanique, 12, 75.Google Scholar
Davey, A. (1962). The growth of Taylor vortices in flow between rotating cylinders. J. Fluid Mech., 14, 336.CrossRefGoogle Scholar
Davey, A., DiPrima, R. C. and Stuart, J. T. (1968). On the instability of Taylor vortices. J. Fluid Mech., 31, 17.CrossRefGoogle Scholar
Drazin, P. G. and Reid, W. H. (1979). Hydrodynamic Instability (CUP, Exercise 3.8).Google Scholar
El-Hady, N. and Verma, A. K. (1981). Growth of Görtler vortices in compressible boundary-layers along curved surfaces. A1AA Paper 811278.Google Scholar
Finnis, M. V. and Brown, A. (1988). Stability of a laminar boundary-layer flowing along a concave wall. ASME Paper, 88-GT-40.Google Scholar
Floryan, J. M. (1986). Görtler instability of boundary-layers over concave and convex walls. Phys. Fluids, 29, 2380.CrossRefGoogle Scholar
Floryan, J. M. and Saric, W. S. (1979). Stability of Görtler vortices in boundary-layers. AIAA J., 20, 316.CrossRefGoogle Scholar
Gaster, M. (1962). A note on the relationship between temporally-increasing and spatially-increasing disturbances in hydrodynamic instability. J. Fluid Mech., 14, 222.CrossRefGoogle Scholar
Gaster, M. (1974). On the effects of boundary-layer growth on flow stability. J. Fluid Mech., 66, 465.CrossRefGoogle Scholar
Görtler, H. (1940). Über eine dreidimensionale instabilität laminarer Grenzschichten an Konkaven wänden. Ges. D. Wiss. Göttingen, Nachr., 1, number 2.Google Scholar
Görtler, H. and Witting, H. (1958). Theorie der secundaren Instabilitat der laminaren Grenzschichten. Proc. IUTAM Symp. on boundary-layer research, Freiburg 1957, 110.Google Scholar
Gregory, N., Stuart, J. T. and Walker, W. S. (1955). On the stability of three-dimensional boundarylayers with application to the flow due to a rotating disc. Phil. Trans. Roy. Soc., A248, 155.Google Scholar
Gregory, N. and Walker, W. S. (1956). The effect on transition of isolated surface excrescences in the boundary-layer. ARC Rep., M2779.Google Scholar
Hall, P. (1982a). Taylor-Görtler vortices in fully developed or boundary-layer flows: linear theory. J. Fluid Mech., 124, 475.CrossRefGoogle Scholar
Hall, P. (1982b). On the nonlinear evolution of Görtler vortices in growing boundary layers. J. Inst. Maths. and Applications, 29, 173.CrossRefGoogle Scholar
Hall, P. (1983). The linear development of Görtler vortices in growing boundary-layers. J. Fluid Mech., 126, 357.CrossRefGoogle Scholar
Hall, P. (1985). The Görtler vortex instability mechanism in three-dimensional boundary layers. Proc. R. Soc., A399, 135.Google Scholar
Hall, P. (1986). An asymptotic investigation of the stationary modes of instability of the boundary-layer on a rotating disk. Proc. Roy. Soc., A406, 93.Google Scholar
Hall, P. (1988). The nonlinear development of Görtler vortices in growing boundary-layers. J. Fluid Mech., 193, 243.CrossRefGoogle Scholar
Hall, P. and Bennett, J. (1986). Taylor-Görtler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary-layer equations. J. Fluid Mech., 171, 441.CrossRefGoogle Scholar
Hall, P. and Fu, Y. (1989a). The Görtler vortex instability mechanism in hypersonic boundary-layers. J. Theor. Comp. Fluid Mech., 1, 125.CrossRefGoogle Scholar
Hall, P. and Fu, Y. (1989b). The Görtler vortex instability in compressible boundary-layers. To appear in Proc. IUTAM Symp. Instability and Transition, Toulouse.Google Scholar
Hall, P. and Lakin, W. D. (1988). The fully nonlinear development of Görtler vortices. Proc. Roy. Soc., A415, 421.Google Scholar
Hall, P. and Malik, M. (1989). The growth of Görtler vortices in compressible boundary-layers. J. Eng. Math., 23, 239.CrossRefGoogle Scholar
Hall, P. and Seddougui, S. O. (1989). On the onset of three-dimensionality and time-dependence in the Görtler problem. J. Fluid Meek, 204, 405.CrossRefGoogle Scholar
Hall, P. and Smith, F. T. (1988). The nonlinear interaction of Tollmien-Schlichting waves and Taylor-Görtler vortices in curved channel flows. Proc. Roy. Soc., A417, 255.Google Scholar
Hall, P. and Smith, F. T. (1989a). Nonlinear Tollmien-Schlichting/vortex interaction in boundary-layers. Eur. J. Mech. B/Fluids, 8, 179.Google Scholar
Hall, P. and Smith, F. T. (1989b). On strongly nonlinear vortex/wave interactions in boundary-layer transition. To appear in J. Fluid Mech.Google Scholar
Hammerlin, G. (1955). Über das Eigenwertproblem der dredimensionalen Instabilität laminare Grenzschichten ab konkaven Wänden. J. Rat. Mech. Anal., 4, 279.Google Scholar
Hammerlin, G. (1956). Zur theorie der dreidimensionalen instabilität laminarer Grenzschichten. ZAMP, 7, 156.Google Scholar
Harvey, W. D. and Pride, J. D. (1982). The NASA Langley laminar flow control airfoil experiment. AIAA paper 820567.CrossRefGoogle Scholar
Herbert, T. (1976). On the stability of the boundary-layer on a concave wall. Arch. Mech. Stos., 28, 1039.Google Scholar
Horseman, N. J. (1990). Some centrifugal instabilities in viscous flows. Exeter University PhD thesis, to be submitted.Google Scholar
Jallade, S. (1989). Effect of streamwise curvature on Görtler vortices. To appear in Proceedings of ICASE Workshop on Instability and Transition (Springer).Google Scholar
Kahawita, R. A. and Meroney, R. N. (1977). The influence of heating on the stability of laminar boundary layers along curved walls. J. Appl. Mech., 44, 11.CrossRefGoogle Scholar
Kalburgi, V., Mangalam, S. M., Dagenhart, J. R. and Tiwari, S. N. (1987). Görtler instability on an airfoil, NASA Symposium on Natural Laminar Flow and Laminar Flow Control Research. To appear as a NASA TM.Google Scholar
Kalburgi, V., Mangalam, S. M. and Dagenhart, J. R. (1988). A comparative study of theoretical methods on Görtler instability. AIAA Paper, 880407.Google Scholar
Kieffer, S. W. and Sturtevant, B. (1988). Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980. J. Geophys. Res., 93, 14793.CrossRefGoogle Scholar
Kobayashi, R. and Kohama, K. (1977). Taylor-Görtler instability of compressible boundary-layers. AIAA J., 15, 1723.CrossRefGoogle Scholar
Kohama, Y. (1987). Three-dimensional boundary-layer transition on a concave-convex wall. Proc. Bangalore IUTAM Symp. Turbulence Management and Relaminarization, ed. Liepmann, H. and Narisimha, R..Google Scholar
Kottke, V. (1986). Taylor Görtler vortices and their effect on heat transfer. Proc. 8th Heat Transfer Conf. San Francisco, 1139.Google Scholar
Liepmann, H. W. (1943). Investigations on laminar boundary-layer stability and transition on curved boundaries. NACA Wartime Report, W107.Google Scholar
Liepmann, H. W. (1945). Investigation of boundary-layer transition on concave walls. NACA Wartime Report, W87.Google Scholar
Malik, M., Zang, T. A. and Hussaini, M. Y. (1985). A spectral collocation method for the Navier-Stokes equations. J. Comput. Phys., 61, 64.CrossRefGoogle Scholar
Malkus, W. (1956). Outline of a theory of turbulent shear flow. J. Fluid Mech., 1, 521.CrossRefGoogle Scholar
Mangalam, S. M., Dagenhart, J. R., Hepner, T. E. and Meyers, J. F. (1985). The Görtler instability on an airfoil. AIAA Paper, 850491.Google Scholar
Mangalam, S. M., Dagenhart, J. R. and Meyers, J. F. (1987). Experimental Studies on Görtler vortices. NASA Symposium on Natural Laminar Flow and Laminar Flow Control Research. To appear as a NASA TM.Google Scholar
Meksyn, D. (1950). Stability of viscous flow over concave cylindrical surfaces. Proc. Roy. Soc., A203, 116.Google Scholar
Park, D. and Huerre, P. (1988). On the convective nature of the Görtler instability. Bull. Amer. Physical Soc., 33, 2252.Google Scholar
Peerhossaini, H. and Wesfreid, J. E. (1988). On the inner structure of streamwise Görtler rolls. Intl. J. Heat Fluid Flow, 9, 12.CrossRefGoogle Scholar
Pfenninger, W., Reed, H. L. and Dagenhart, J. R. (1980). Design considerations of advanced supercritical low-drag suction airfoils. Viscous Flow Drag Reduction, ed. Hough, G. R., Progress in Astro, and Aero., 72, 249.Google Scholar
Rayleigh, Lord (1916). On the dynamics of revolving fluids. Proc. Roy. Soc., A93, 148.Google Scholar
Sabry, A. and Liu, J. C. T. (1987). Nonlinear development of Görtler vortices and the generation of high shear layers in the boundary-layer. Proc. Symp. in Honour of C. C. Lin (World Scientific Books).Google Scholar
Seminara, G. and Hall, P. (1975). Centrifugal instability of a Stokes layer: linear theory. Proc. Roy. Soc., A350, 299.Google Scholar
Smith, A. M. O. (1955). On the growth of Taylor-Görtler vortices along highly concave walls. Quart. Appl. Math., 13, 233.CrossRefGoogle Scholar
Smith, F. T. (1979). On the nonparallel stability of the Blasius boundary-layer. Proc. Roy. Soc., A366, 91.Google Scholar
Spall, R. E. and Malik, M. (1989). Görtler vortices in supersonic and hypersonic boundary-layers. Phys. Fluids, A1, 1822.CrossRefGoogle Scholar
Swearingen, J. D. and Blackwelder, R. F. (1983). Parameters controlling the spacing of streamwise vortices on concave walls. AIAA Paper, 830380.Google Scholar
Swearingen, J. D. and Blackwelder, R. F. (1987). The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech., 182, 255.CrossRefGoogle Scholar
Tani, I. (1962). Prediction of longitudinal vortices in the boundary-layer along a curved wall. J. Geophys. Research, 67, 3075.CrossRefGoogle Scholar
Tani, I. and Sakagami, J. (1962). Boundary-layer instability at subsonic speeds. Proc. ICAS. III Congress Stockholm, 1962, 391.Google Scholar
Taylor, G. I. (1923). Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc., A223, 289.Google Scholar
Tobak, M. (1971). On local Görtler instability. ZAMP, 22, 130.Google Scholar
Wadey, P. (1989). Görtler vortex instabilities of incompressible and compressible boundary-layers. Exeter University Ph.D. thesis.Google Scholar
Winoto, S. H. and Crane, R. I. (1980). Vortex structure in laminar boundary-layers on a concave wall. Int. J. Heat and Fluid Flow, 2, 221.CrossRefGoogle Scholar
Witting, H. (1958). Über den einfluss der Stromlinienkrümmung auf die Stabilität laminarer Stromungen. Arch. Rat. Mech. Anal., 2, 243.CrossRefGoogle Scholar
Wortmann, F. X. (1964a). Experimentelle Unter suchungen laminarer Grenzschichten bei instabiler Schichtung. Proc. XI Intl. Cong. Appl. Mech., 815.CrossRefGoogle Scholar
Wortmann, F. X. (1964b). Experimental investigation of vortex occurrence at transition in unstable boundary-layers. AFOSR Report, 641280.Google Scholar