Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-19T05:10:13.867Z Has data issue: false hasContentIssue false

Kahane-Khinchine type inequalities for negative exponent

Published online by Cambridge University Press:  26 February 2010

Olivier Guédon
Affiliation:
Université de Marne La Vallée, Equipe d'Analyse et de Mathématiques Appliquées, Cité Descartes, 5 Boulevard Descartes, Champs sur Marne, 77454 Marne la Vallée Cedex 2, France.
Get access

Abstract

We prove a concentration inequality for δ-concave measures over ℝn. Using this result, we study the moments of order q of a norm with respect to a δ-concave measure over ℝn. We obtain a lower bound for q∈ ]−1, 0] and an upper bound for q∈ ]0,+ ∞[ in terms of the measure of the unit ball associated to the norm. This allows us to give Kahane-Khinchine type inequalities for negative exponent.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Borell, C.. The Brunn-Minkowski inequality in Gauss spaces. Invent. Math., 30 (1975), 207216.CrossRefGoogle Scholar
2.Borell, C.. Convex set functions in d-space. Period. Math. Hungarica, 6 (1975), 111136.CrossRefGoogle Scholar
3.Kahane, J. P.. Some random series of functions, second edition, Cambridge Studies in Advanced Math., 5 (1985, Cambridge University Press).Google Scholar
4.Latala, R.. On the equivalence between geometric and arithmetic means for logconcave measures. Convex Geometric Analysis, MSRI, Publications, 34 (1998), 123128.Google Scholar
5.Lovász, L. and Simonovits, M.. Random walks in a convex body and an improved volume algorithm. Random Structures Algorithms, 4 (1993), 359412.CrossRefGoogle Scholar
6.Milman, V. D. and Pajor, A.. Cas limites dans des inégalités du type de Khinchine et applications géométriques. CR. Acad. Sci. Paris, 308, Série I (1989), 9196.Google Scholar
7.Milman, V. D. and Schechtman, G.. Asymptotic theory of finite dimensional normed spaces. Springer Lecture Notes, 1200 (1986).Google Scholar
8.Ullrich, D. C.. An extension of the Kahane-Khinchine inequality in a Banach space. Israel J. Math., 62 (1988), 5662.CrossRefGoogle Scholar