Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-19T12:10:29.228Z Has data issue: false hasContentIssue false

SPECTRAL STABILITY ESTIMATES FOR ELLIPTIC OPERATORS SUBJECT TO DOMAIN TRANSFORMATIONS WITH NON-UNIFORMLY BOUNDED GRADIENTS

Published online by Cambridge University Press:  24 February 2012

Gerassimos Barbatis
Affiliation:
Department of Mathematics, University of Athens, 157 84 Athens, Greece (email: gbarbatis@math.uoa.gr)
Pier Domenico Lamberti
Affiliation:
Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste, 63, 35121 Padova, Italy (email: lamberti@math.unipd.it)
Get access

Abstract

We consider uniformly elliptic operators with Dirichlet or Neumann homogeneous boundary conditions on a domain Ω in ℝN. We consider deformations ϕ(Ω) of Ω obtained by means of a locally Lipschitz homeomorphism ϕ and we estimate the variation of the eigenfunctions and eigenvalues upon variation of ϕ. We prove general stability estimates without assuming uniform upper bounds for the gradients of the maps ϕ. As an application, we obtain estimates on the rate of convergence for eigenvalues and eigenfunctions when a domain with an outward cusp is approximated by a sequence of Lipschitz domains.

Type
Research Article
Copyright
Copyright © University College London 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barbatis, G., Burenkov, V. I. and Lamberti, P. D., Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains. In Around the Research of Vladimir Maz’ya. II (International Mathematics Series (New York) 12), Springer (New York, NY, 2010), 2360.Google Scholar
[2]Besov, O. V., Il’in, V. P. and Nikol’skii, S. M., Integral Representations of Functions and Imbedding Theorems, Vol. 1 (Scripta Series in Mathematics), Halsted Press, Wiley (New York, NY, 1978).Google Scholar
[3]Birman, M. S. and Solomyak, M. Z., Spectral asymptotics of non-smooth elliptic operators I. Trans. Moscow Math. Soc. 27 (1972), 152.Google Scholar
[4]Burenkov, V. I. and Davies, E. B., Spectral stability of the Neumann Laplacian. J. Differential Equations 186 (2002), 485508.CrossRefGoogle Scholar
[5]Burenkov, V. I. and Lamberti, P. D., Pier Domenico Spectral stability of Dirichlet second order uniformly elliptic operators. J. Differential Equations 244 (2008), 17121740.Google Scholar
[6]Burenkov, V. I. and Lamberti, P. D., Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators. J. Differential Equations 233 (2008), 345379.Google Scholar
[7]Burenkov, V. I. and Lamberti, P. D., Spectral stability of higher order uniformly elliptic operators. In Spectral Stability of Higher Order Uniformly Elliptic Operators. Sobolev Spaces in Mathematics. II (International Mathematics Series (New York) 9), Springer (New York, NY, 2009), 69102.Google Scholar
[8]Burenkov, V. I. and Lamberti, P. D., Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators. Rev. Mat. Complut. (to appear).Google Scholar
[9]Burenkov, V. I., Lamberti, P. D. and Lanza de Cristoforis, M., Spectral stability of non-negative selfadjoint operators. Sovrem. Mat. Fundam. Napravl. 15 (2006), 76111 (in Russian). Engl. transl. J. Math. Sci. (N. Y.), 149 (2008), 1417–1452).Google Scholar
[10]Deift, P., Applications of a commutation formula. Duke Math. J. 45 (1978), 267309.Google Scholar
[11]Jerison, D. and Kenig, C. E., The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995), 161219.CrossRefGoogle Scholar
[12]Lamberti, P. D. and Perin, M., On the sharpness of a certain spectral stability estimate for the Dirichlet Laplacian. Eurasian Math. J. 1 (2010), 111122.Google Scholar
[13]Lemenant, A. and Milakis, E., Quantitative stability for the first Dirichlet eigenvalue in Reifenberg flat domains in . J. Math. Anal. Appl. 364 (2010), 522533.Google Scholar
[14]Maz’ya, V. G. and Plamenevskii, B. A., Estimates in L p and in Hölder classes and the Miranda–Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Amer. Math. Soc. Transl. Ser. 2 123 (1984), 156.Google Scholar
[15]Pang, M. M. H., Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians. Bull. Lond. Math. Soc. 29 (1997), 720730.Google Scholar
[16]Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-adjointness, Academic Press (Boston, MA, 1975).Google Scholar
[17]Simon, B., Trace Ideals and their Applications, Cambridge University Press (Cambridge, 1979).Google Scholar