Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-19T09:12:32.441Z Has data issue: false hasContentIssue false

Weber's class invariants

Published online by Cambridge University Press:  26 February 2010

B. J. Birch
Affiliation:
Mathematical Institute, 24-29 St. Giles, Oxford.
Get access

Extract

Weber proves in §§114-124 of his Algebra [19] that if w is complex quadratic and ℤ[ω] is the ring of integers of the field ℚ(ω) then the absolute class field of ℚ(ω) is generated by the modular invariant j(w); he calls j(w) a class invariant. He goes on in §§125-144 to consider the values f(w) of other modular functions f(z); he shows that in certain cases the degree of the extension ℚ(ω, f(ω)) of ℚ(ω, j(ω)) is much less than that of ℚ(f(z)) over ℚ(f(z)); indeed, f(ω) is often in ℚ(ω, j(ω)), and in such circumstances Weber calls f(ω) a class invariant too. Using such results, Weber computes many class invariants—an end in itself, since the numbers are so beautiful. More recently, results of this type have been applied to determine all the complex quadratic fields with class number 1, and to prove that elliptic curves of certain families always have infinitely many rational points-see [9, 2, 5].

Type
Research Article
Copyright
Copyright © University College London 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baker, A., “Linear forms in the logarithms of algebraic numbers”, Mathematika, 13 (1966), 204216.CrossRefGoogle Scholar
2.Birch, B. J., “Diophantine analysis and modular functions”, Proceedings of the Conference on Algebraic Geometry (Bombay, 1968), 3542.Google Scholar
3.Deuring, M., “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Univ. Hamburg, 14 (1941), 197272.CrossRefGoogle Scholar
4.Deuring, M., “Die Klassenkörper der komplexen Multiplikation”, Enz. Math. Wiss. Band I2, Heft 10 Teil II (Stuttgart, 1958).Google Scholar
5.Deuring, M., “Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins”, Invent. Math., 5 (1968), 169179.CrossRefGoogle Scholar
6.Fricke, R., Lehrbuch der Algebra III (Braunschweig, 1928).Google Scholar
7.Hasse, H., “Zum Hauptidealsatz der komplexen Multiplikation, usw”, Monatshefte für Math., 38 (1931), 315322, 323-330, 331-344.CrossRefGoogle Scholar
8.Hasse, H., “History of class field theory ”, Algebraic Number Theory, ed. Cassels, J. W. S. and Fröhlich, A. (Academic Press, 1967), 266279.Google Scholar
9.Heegner, K., “Diophantische Analysis und Modulfunktionen”, Math. Zeit., 56 (1952), 227253.CrossRefGoogle Scholar
10.Klein, F. and Fricke, R., Vorlesungen über die Theorie der elliptischen Modulfunktionen, 2 Vols. (Leipzig, 1890–92).Google Scholar
11.Ramachandra, K., “Some applications of Kronecker's limit formulas”, Ann. Math., 80 (1964), 104148.CrossRefGoogle Scholar
12.Ramanujan, S., “Modular equations and approximations to π”, Quart J. of Math., 45 (1914), 350372.Google Scholar
13.Siegel, C. L., “On advanced analytic number theory”, Tata Institute Lecture Notes, 23 (Bombay, 1961).Google Scholar
14.Siegel, C. L., “Zum Beweise des Starkschen Satzes”, Invent. Math., 5 (1968), 180191.CrossRefGoogle Scholar
15.Söhngen, H., “Zur komplexen Multiplikation”, Math. Annalen, 111 (1935), 302328.CrossRefGoogle Scholar
16.Stark, H. M., “A complete determination of the complex quadratic fields of classnumber one”, Michigan Math. J., 14 (1967), 127.CrossRefGoogle Scholar
17.Stark, H. M., Seminar, University of Michigan, 1967.Google Scholar
18.Watson, G. N., “Singular moduli (6)”, Proc. London Math. Soc., II, 42 (1936), 398409; and many earlier papers.Google Scholar
19.Weber, H., Lehrbuch der Algebra III (Braunschweig, 1908).Google Scholar