Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-25T00:14:15.959Z Has data issue: false hasContentIssue false

Discriminants in the invariant theory of reflection groups

Published online by Cambridge University Press:  22 January 2016

Peter Orlik
Affiliation:
University of Wisconsin, Madison, WI, 53706, U.S.A.
Louis Solomon
Affiliation:
University of Wisconsin, Madison, WI, 53706, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let V be a complex vector space of dimension l and let GGL(V) be a finite reflection group. Let S be the C-algebra of polynomial functions on V with its usual G-module structure (gf)(v) = f{g-1v). Let R be the subalgebra of G-invariant polynomials. By Chevalley’s theorem there exists a set = {f1, …, fl} of homogeneous polynomials such that R = C[f1, …, fl]. We call a set of basic invariants or a basic set for G. The degrees di = deg fi are uniquely determined by G. We agree to number them so that d1 ≤ … ≤ di. The map τ: V/G → C1 defined by

is a bijection. Each reflection in G fixes some hyperplane in V.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1988

References

[1] Bannai, Etsuko, Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension 2, J. Math. Soc. Japan, 28 (1976), 447454.CrossRefGoogle Scholar
[1] Coxeter, H. S. M., The symmetry groups of the regular complex polygons, Arch., Math., 13 (1962), 8697.Google Scholar
[1] Coxeter, H. S. M., Finite groups generated by unitary reflections, Abhandlungen Math. Sem. Univ. Hamburg, 31 (1967), 127135.Google Scholar
[1] Coxeter, H. S. M., Regular Complex Polytopes, Cambridge Univ. Press, 1974.Google Scholar
[1] Deligne, P., Les immeubles des groupes de tresses généralisés, Invent, math., 17 (1972), 273302.Google Scholar
[1] Grace, J. H.and Young, A., The Algebra of Invariants, Cambridge Univ. Press, 1903.Google Scholar
[1] Klein, F., Vorlesungen Über das Ikosaeder, Teubner, Leipzig, 1884.Google Scholar
[1] Koster, D. W., Complex Reflection Groups, Thesis, Univ. of Wisconsin, Madison, 1975.Google Scholar
[1] Maschke, H., Aufstellung des vollen Formensystems einer quaternären Gruppe von 51840 linearen substitutionen, Math. Ann., 33 (1888), 317344.CrossRefGoogle Scholar
[10] Milnor, J., Singular points of complex hypersurfaces, Ann. of Math. Studies 61, Princeton Univ. Press, 1968.Google Scholar
[11] Nakamura, T., A Note on the K(π, 1) property of the orbit space of the unitary reflection group G(m, l, n), Sci. Papers College of Arts and Sciences, Univ. Tokyo, 33 (1983), 16.Google Scholar
[12] Orlik, P. and Solomon, L., Unitary reflection groups and cohomology, Invent, math., 59 (1980), 7794.Google Scholar
[13] Orlik, P. and Solomon, L., Complexes for reflection groups, in Proc. Midwest Algebraic Geometry Conf., Lecture Notes in Math., No. 862, Springer Verlag (1981), 193207.Google Scholar
[14] Orlik, P. and Solomon, L., The Hessian map in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 121.CrossRefGoogle Scholar
[1] Saito, K., On a Linear Structure of a Quotient Variety by a Finite Reflexion Group, RIMS Report 288, Kyoto 1979.Google Scholar
[16] Saito, K., Yano, T. and Sekiguchi, J., On a certain generator system of the ring of invariants of a finite reflection group, Comm. Algebra, 8 (1980), 373408.CrossRefGoogle Scholar
[17] Shephard, G. C., Regular complex polytopes, Proc. London Math. Soc, (3) 2 (1952), 8297.Google Scholar
[18] Shephard, G. C., Unitary groups generated by reflections, Canad. J. Math., 5 (1953), 364383.Google Scholar
[19] Shephard, G. C.and Todd, J. A., Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274304.Google Scholar
[20] Springer, T. A., Regular elements of finite reflection groups, Invent, math., 25 (1974), 159198.Google Scholar
[21] Springer, T. A., Invariant Theory, Lecture Notes in Math., No. 585, Springer Verlag, 1977.Google Scholar
[22] Terao, H., Discriminant of a holomorphic map and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 30 (1983), 379391.Google Scholar
[23] Turnbull, H. W., The Theory of Determinants, Matrices and Invariants, 3rd Ed., Dover 1960.Google Scholar
[24] Yano, T. and Sekiguchi, J., The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems I, II, Tokyo J. Math., 2 (1979), 193219; 4 (1981), 134.Google Scholar