Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T15:53:49.562Z Has data issue: false hasContentIssue false

Integers free of small prime factors in arithmetic progressions*

Published online by Cambridge University Press:  22 January 2016

Ti Zuo Xuan*
Affiliation:
Department of Mathematics, Beijing Normal University, Beijing 100875, People’s, Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For real xy ≥ 2 and positive integers a, q, let Φ(x, y; a, q) denote the number of positive integers ≤ x, free of prime factors ≤ y and satisfying na (mod q). By the fundamental lemma of sieve, it follows that for (a,q) = 1, Φ(x,y;a,q) = φ(q)-1, Φ(x, y){1 + O(exp(-u(log u- log2 3u- 2))) + (u = log x log y) holds uniformly in a wider ranges of x, y and q.

Let χ be any character to the modulus q, and L(s, χ) be the corresponding L-function. Let be a (‘exceptional’) real character to the modulus q for which L(s, ) have a (‘exceptional’) real zero satisfying > 1 - c0/log q. In the paper, we prove that in a slightly short range of q the above first error term can be replaced by where ρ(u) is Dickman function, and ρ′(u) = dρ(u)/du.

The result is an analogue of the prime number theorem for arithmetic progressions. From the result can deduce that the above first error term can be omitted, if suppose that 1 < q < (log q)A.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

Footnotes

*

Project supported by the National Natural Science Foundation of P. R of China (No. 19571011).

References

[1] de Bruijn, N.G., On the number of uncancelled elements in the sieve of Eratosthenes, Nederl. Akad. Wetensch. Proc. Ser. A, 53 (1950), 803812.Google Scholar
[2] de Bruijn, N.G., The asymptotic behavior of a function occurring in the theory of primes, J. Indian Math. Soc. (N. S.), 15 (1951), 2532.Google Scholar
[3] de Bruijn, N.G., On the number of positive integers ≤ x and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser. A, 54 (1951), 5060.Google Scholar
[4] Buchstab, A.A., Asymptotic estimates of a general number-theoretic function (Russian), Mat. Sb., 2(44) (1937), 12391246.Google Scholar
[5] Davenport, H., Multiplicative Number Theory (2nd Edn.), 74, GTM, Springer-Verlag, New York, 1980.Google Scholar
[6] Fouvry, E. and Tenenbaum, G., Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc., (3)63 (1991), 449494.Google Scholar
[7] Friedlander, J. and Granville, A., Limitations to the equi-distribution of prime I, Ann. Math., 129 (1989), 363382.CrossRefGoogle Scholar
[8] Friedlander, J., Granville, A., Hildebrand, A. and Maier, H., Oscillation theorems for primes in arithmetic progressions and for sifting functions, J. Amer. Math. Soc., 4 (1991), 2586.Google Scholar
[9] Halberstam, H. and Richert, H.-E., Sieve Methods, Academic Press, London, New York, 1974.Google Scholar
[10] Hildebrand, A., The asymptotic behavior of the solutions of a class of differential-difference equation, J. London Math. Soc., 42 (1990), 1131.Google Scholar
[11] Hildebrand, A. and Maier, H., Irregularities in the distribution of primes in short intervals, J. Reine Angew. Math., 397 (1989), 162193.Google Scholar
[12] Hildebrand, A. and Tenenbaum, G., On integers free of large prime factors, Trans. Amer. Math. Soc., 296 (1986), 265290.Google Scholar
[13] Iwaniec, H., Rosser’s sieve, Acta Arith., 36 (1980), 171202.Google Scholar
[14] Maier, H., Primes in short intervals, Michigan Math. J., 32 (1985), 221225.CrossRefGoogle Scholar
[15] Norton, K.K., ‘Numbers with small prime factors and the least kth power non residue, 106 (1971), Mem. Amer. Math. Soc.Google Scholar
[16] Pan, C.D. and Pan, C. B., Elements of Analytic Number Theory (Chinese), Scientia Press, Beijing, 1991.Google Scholar
[17] Prachar, K., Primzahlverteilung, Springer-Verlag, Berlin, 1957.Google Scholar
[18] Saias, E., Sur le nombre des entiers sans grand facteur premier, J. Number Theory, 32 (1989), 7899.Google Scholar
[19] Tenenbaum, G., Introduction to analytic and probabilistic number theory, Cambridge studies in advanced mathematics, No. 46, Cambridge University Press, 1995.Google Scholar
[20] Titchmarsh, E.C., The theory of the Riemann-Zeta function (2nd edition, revised by Heath-Brown, D.R., Oxford, 1986.Google Scholar
[21] Vinogradov, A.I., On numbers with small prime divisors, (Russian), Dokl. Akad, Nauk SSSR (N.S.), 109 (1956), 683686.Google Scholar
[22] Wolke, D., Über die mittlere verteilung der werte zahlenthloretischer funktionen, Math. Ann., 204 (1973), 145153.Google Scholar
[23] Xuan, T.Z., On the asymptotic behavior of the Dickman-de Bruijn function, Math. Ann., 297 (1993), 519533.Google Scholar
[24] Xuan, T.Z., On the asymptotic estimates of sifting function, Quart. J. Math. Oxford (2), 49 (1998), 237258.Google Scholar