Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-18T16:32:07.428Z Has data issue: false hasContentIssue false

ON THE SHARPNESS OF TIAN’S CRITERION FOR K-STABILITY

Published online by Cambridge University Press:  23 October 2020

YUCHEN LIU*
Affiliation:
Department of Mathematics Princeton University Princeton, NJ 08544 USA
ZIQUAN ZHUANG
Affiliation:
Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USAziquan@mit.edu

Abstract

Tian’s criterion for K-stability states that a Fano variety of dimension n whose alpha invariant is greater than ${n}{/(n+1)}$ is K-stable. We show that this criterion is sharp by constructing n-dimensional singular Fano varieties with alpha invariants ${n}{/(n+1)}$ that are not K-polystable for sufficiently large n. We also construct K-unstable Fano varieties with alpha invariants ${(n-1)}{/n}$ .

Type
Article
Copyright
© Foundation Nagoya Mathematical Journal, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadinezhad, H., Cheltsov, I., and Schicho, J., On a conjecture of Tian , Math. Z. 288 (2018), 217241.CrossRefGoogle Scholar
Blum, H. and Liu, Y., The normalized volume of a singularity is lower semicontinuous, to appear in J. Eur. Math. Soc. (JEMS) 2018. arXiv:1802.09658.Google Scholar
Blum, H. and Liu, Y., Openness of uniform K-stability in families of $\mathbb{Q}$ -Fano varieties, to appear in Ann. Sci. Éc. Norm. Supér. 2018, arXiv:1808.09070.Google Scholar
Blum, H. and Xu, C., Uniqueness of K-polystable degenerations of Fano varieties , Ann. Math. 190 (2019), 609656.CrossRefGoogle Scholar
Chen, X., Donaldson, S., and Sun, S., Kähler-Einstein metrics on Fano manifolds. I: approximation of metrics with cone singularities, II: limits with cone angle less than $2\pi$ , III: limits as cone angle approaches $2\pi$ and completion of the main proof , J. Am. Math. Soc. 28 (2015), 183197, 199–234, 235–278.CrossRefGoogle Scholar
Cheltsov, I. A., Log canonical thresholds on hypersurfaces , Mat. Sb. 192 (2001), 155172.Google Scholar
Cheltsov, I., On singular cubic surfaces , Asian J. Math. 13 (2009), 191214.CrossRefGoogle Scholar
Cheltsov, I. A. and Shramov, K. A., Log-canonical thresholds for nonsingular Fano threefolds , Uspekhi Mat. Nauk. 63 (2008), 73180.Google Scholar
Cheltsov, I. and Shramov, C., On exceptional quotient singularities , Geom. Topol. 15 (2011), 18431882.CrossRefGoogle Scholar
Demailly, J.-P. and Kollár, J., Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds , Ann. Sci. École Norm. Sup. 34 (2001), 525556.CrossRefGoogle Scholar
Donaldson, S. K., Scalar curvature and stability of toric varieties , J. Differential Geom. 62 (2002), 289349.CrossRefGoogle Scholar
Donaldson, S. and Sun, S., Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry , Acta Math. 213 (2014), 63106.CrossRefGoogle Scholar
Fujita, K. and Odaka, Y., On the K-stability of Fano varieties and anticanonical divisors , Tohoku Math. J. 70 (2018), 511521.CrossRefGoogle Scholar
Fujita, K., Private communication.Google Scholar
Fujita, K., K-stability of Log Fano hyperplane arrangements. 2017. arXiv:1709.08213.Google Scholar
Fujita, K., K-stability of Fano manifolds with not small alpha invariants , J. Inst. Math. Jussieu. 18 (2019), 519530.CrossRefGoogle Scholar
Fujita, K., A valuative criterion for uniform K-stability of Q-Fano varieties , J. Reine Angew. Math. (2019), 309338.CrossRefGoogle Scholar
Hartshorne, R., Algebraic geometry In Graduate Texts in Mathematics, 52, Springer, New York, NY-Heidelberg, Germany, 1977.Google Scholar
Han, J., Liu, J., and Shokurov, V. V., ACC for minimal log discrepancies of exceptional singularities. 2019. arXiv:1903.04338.Google Scholar
Jiang, C, Boundedness of $\mathbb{Q}$ -Fano varieties with degrees and alpha-invariants bounded from below, to appear in Ann. Sci. Éc. Norm. Supér, 2017, arXiv:1705.02740.Google Scholar
Jiang, C., K-semistable Fano manifolds with the smallest alpha invariant , Int. J. Math. 28 (2017), 9.CrossRefGoogle Scholar
Kollár, J., “Flips and abundance for algebraic threefolds. Société Mathématique de France, Paris, 1992” in Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211, (1992).Google Scholar
Keel, S. and Mori, S., Quotients by groupoids , Ann. Math. 145 (1997), 193213.CrossRefGoogle Scholar
Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties, Volume 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, MA, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.CrossRefGoogle Scholar
Kollár, J., “Singularities of pairs” in Algebraic Geometry—Santa Cruz 1995, Volume 62 of Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 1997, 221287.CrossRefGoogle Scholar
Kollár, J., Seifert ${G}_m$ -bundles. 2004, arXiv:math/0404386.Google Scholar
Kudryavtsev, S. A., On purely log terminal blow-ups , Mat. Zametki. 69 (2001), 892898.Google Scholar
Li, C., Remarks on logarithmic K-stability , Commun. Contemp. Math. 17 (2015), 17.CrossRefGoogle Scholar
Li, C., K-semistability is equivariant volume minimization , Duke Math. J. 166 (2017), 31473218.CrossRefGoogle Scholar
Liu, Y., The volume of singular Kähler-Einstein Fano varieties , Compos. Math. 154 (2018), 11311158.CrossRefGoogle Scholar
Li, C. and Liu, Y., Kähler-Einstein metrics and volume minimization , Adv. Math. 341 (2019), 440492.CrossRefGoogle Scholar
Li, C., Wang, X., and Xu, C.. Algebraicity of the metric tangent cones and equivariant K-stability. 2018. arXiv:1805.03393.Google Scholar
Li, C., Wang, X., and Xu, C., On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties , Duke Math. J. 168 (2019), 13871459.CrossRefGoogle Scholar
Li, C. and Xu, C., Special test configuration and K-stability of Fano varieties , Ann. Math. 180 (2014), 197232.CrossRefGoogle Scholar
Li, C. and Xu, C., Stability of valuations and Kollár components , J. Eur. Math. Soc. 22 (2020), 25732627.CrossRefGoogle Scholar
Liu, Y. and Zhuang, Z., Characterization of projective spaces by Seshadri constants , Math. Z. 289 (2018), 2538.CrossRefGoogle Scholar
Odaka, Y. and Sano, Y., Alpha invariant and K-stability of $\mathbb{Q}$ -Fano varieties , Adv. Math. 229 (2012), 28182834.CrossRefGoogle Scholar
Odaka, Y. and Sun, S., Testing log K-stability by blowing up formalism , Ann. Fac. Sci. Toulouse Math. 24 (2015), 505522.CrossRefGoogle Scholar
Prokhorov, Y. G., “Blow-ups of canonical singularities” in Algebra (Moscow, 1998), de Gruyter, Berlin, Germany, 2000, 301317.Google Scholar
Pukhlikov, A. V., Birationally rigid Fano hypersurfaces , Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), 159186.Google Scholar
Pukhlikov, A. V., Birational geometry of Fano direct products , Izv. Ross. Akad. Nauk Ser. Mat., 69 (2005), 153186.Google Scholar
Pukhlikov, A., Birationally Rigid Varieties, Volume 190 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013.Google Scholar
Pukhlikov, A. V., Canonical and log canonical thresholds of Fano complete intersections , Eur. J. Math. 4 (2018), 381398.CrossRefGoogle Scholar
Shi, Y., On the $\alpha$ -invariants of cubic surfaces with Eckardt points , Adv. Math., 225 (2010), 12851307.CrossRefGoogle Scholar
Suzuki, F., Birational rigidity of complete intersections , Math. Z. 285 (2017), 479492.CrossRefGoogle Scholar
Tian, G., On Kähler-Einstein metrics on certain Kähler manifolds with C1(M) > 0 , Invent. Math. 89 (1987), 225246.CrossRefGoogle Scholar
Tian, G., Kähler-Einstein metrics with positive scalar curvature , Invent. Math. 130 (1997), 137.CrossRefGoogle Scholar
Tian, G., K-stability and Kähler-Einstein metrics , Comm. Pure Appl. Math.. 68 (2015), 10851156.CrossRefGoogle Scholar
Zhuang, Z., Birational superrigidity and K-stability of Fano complete intersections of index $1$ , Duke Math. J. 169 (2020), 22052229.Google Scholar