Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-18T12:29:50.266Z Has data issue: false hasContentIssue false

Picard principle for finite densities

Published online by Cambridge University Press:  22 January 2016

Mitsuru Nakai*
Affiliation:
Department of Mathematics Nagoya, Institute of Technology Gokiso, Showa, Nagoya 466, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A nonnegative locally Holder continuous function P(z) on 0<|z |≤1 will be referred to as a density on Ω 0 < |z | < 1 with singularity at δ : z = 0, removable or genuine. A density P on Ω is said to be finite if it is integrable over Ω :

(1) ∫ Ω P(z)dxdy < ∞.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1978

References

[1] Brelot, M.: Étude des l’équation de la chaleur Δu = c(M)u(M), c(M) ≧ 0, au voisinage d’un point singulier du coefficient, Ann Éc. Norm. Sup., 48 (1931), 153246.CrossRefGoogle Scholar
[2] Brelot, M.: Lectures on Potential Theory, Tata Inst. Fund. Res., 1960.Google Scholar
[3] Dunford, N. and Schwartz, L.: Linear Operators, I, Interscience Publishers, 1957.Google Scholar
[4] Hayashi, K.: Les solutions positives de l’équation Au = Pu sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 2024.Google Scholar
[5] Heins, M.: Riemann surfaces of infinite genus, Ann. Math., 55 (1952), 296317.CrossRefGoogle Scholar
[6] Itô, S.: Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307334.CrossRefGoogle Scholar
[7] Kawamura, M. and Nakai, M.: A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323342.CrossRefGoogle Scholar
[8] Miranda, C.: Partial Differential Equations of Elliptic Type, Springer, 1970.Google Scholar
[9] Nakai, M.: The space of nonnegative solutions of the equation Au = Pu on a Riemann surface, Kōdai Math. Sem. Rep., 12 (1960), 151178.Google Scholar
[10] Nakai, M.: Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483507.CrossRefGoogle Scholar
[11] Nakai, M.: A test for Picard principle, Nagoya Math. J., 56 (1974), 105119.CrossRefGoogle Scholar
[12] Nakai, M.: A remark on Picard principle, Proc. Japan Acad., 50 (1974), 806808.Google Scholar
[13] Nakai, M.: A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412431.CrossRefGoogle Scholar
[14] Nakai, M.: Picard principle and Riemann Theorem, Tôhoku Math. J., 28 (1976), 277292.CrossRefGoogle Scholar
[15] Ozawa, M.: Some classes of positive solutions of Au = Pu on Riemann surfaces, I/II, Kōdai Math. Sem. Rep., 6/7 (1954)/(1955), 121126/1520.Google Scholar
[16] Phelps, R.: Lectures on Choquet’s Theorem, Van Nostrand Math. Studies #7, 1965.Google Scholar
[17] Rodin, B. and Sario, L.: Principal Functions, Van Nostrand, 1968.CrossRefGoogle Scholar
[18] Sur, M.: The Martin boundary for a linear elliptic second order operator, Izv. Akad. Nauk SSSR, 27 (1963), 4560 (Russian).Google Scholar
[19] Tsuji, M.: Potential Theory in Modern Function Theory, Maruzen, 1959.Google Scholar
[20] Yosida, K.: Functional Analysis, Springer, 1965.Google Scholar