Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-16T12:51:16.967Z Has data issue: false hasContentIssue false

Reductibility and irreducibility of the Gauss-Manin system associated with a Selberg type integral

Published online by Cambridge University Press:  22 January 2016

Katsuhisa Mimachi*
Affiliation:
Department of Mathematics, Faculty of Science, Kyushu University, Hakozaki, Fukuoka 812, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider the function with variables z1…,zm

where υ and λj (j = 1,…,m) are complex numbers and.Г is a suitably chosen integral domain. In case m = 2, if we set [z1 z2]n as Г, it is the Selberg integral [22]. Our function can be regarded as an extention of it; so we may call (0.1) a Selberg type integral It is known that (0.1) satisfies a Gauss-Manin system, i.e. a system of rationally holonomic differential equations [3], [21].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1993

References

[1] Aomoto, K., Un théorème du type de Matsushima-Murakami concernant l’intégrale des fonctions multiformes, J. Math. Pures Appl, 52 (1973), 111.Google Scholar
[2] Aomoto, K., Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Univ. Tokyo, 25 (1978), 149156.Google Scholar
[3] Aomoto, K., Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan, 39 (1987), 191208.CrossRefGoogle Scholar
[4] Beerends, R. J. and Opdam, E. M., Certain hypergeometric series related to the root system BC, preprint 1990.Google Scholar
[5] Brieskorn, E., Sur les groupes de tresses. In: Sém. Bourbaki, Lecture Notes in Math., 317, pp. 2144, Springer 1973.Google Scholar
[6] Date, E., Jimbo, M., Matsuo, A. and Miwa, T., Hypergeometric type integrals and the sl(2, C) Knizhnik-Zamolodchikov equation, in “Yang-Baxter equations, conformai invariance and integrability in statistical mechanics and field theory”, World Scientific (1989).Google Scholar
[7] Deligne, P., Equations Différentielles à Points Singulier Régulier, Lecture Notes in Math., 163, Springer 1970.Google Scholar
[8] Dotsenko, V.S. and Fateev, V. A., Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys., B240 (1984), 312348.Google Scholar
[9] Esnault, H., Schechtman, V. and Viehweg, E., Cohomology of local system on the complement of hyperplanes, Invent. Math., 109 (1992), 557561. Errata, ibid., 112 (1993), 447.CrossRefGoogle Scholar
[10] Hain, R.M., On a generalization of Hubert’s 21st problem, Ann. Sci. École Norm. Sup., 19 (1986), 609627.Google Scholar
[11] Heckman, G.J. and Opdam, E. M., Root systems and hypergeometric functions I, Comp. Math., 64 (1987), 329352.Google Scholar
[12] Heckman, G.J., Root systems and hypergeometric functions II, Comp. Math., 64 (1987), 353374.Google Scholar
[13] Kaneko, J., Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal, 24 (1993), 10861110.Google Scholar
[14] Kita, M. and Noumi, M., On the structure of cohomology groups attached to certain many valued analytic functions, Japan. J. Math., 9 (1983), 113157.Google Scholar
[15] Kita, M., On hypergeometric functions in several variables 1. New integral representations of Euler type, Japan. J. Math., 18 (1992), 2574.CrossRefGoogle Scholar
[16] Kohno, T., Homology of a local system on the complement of hyperplanes Proc. Japan Acad., 62, Ser. A (1986), 144147.Google Scholar
[17] Kohno, T., On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces, Nagoya Math. J., 92 (1983), 2137.Google Scholar
[18] Kohno, T., Hecke algebra representations of braid groups and classical Yang-Baxter equations, Adv. Stud. Pure Math., 16 (1988), 255269.CrossRefGoogle Scholar
[19] Lappo-Danilevsky, LA., Mémoires sur la théorie des systèmes des équations différentielles linéaires, reprint, Chelsea, New York, 1953.Google Scholar
[20] Sasaki, T., Picard-Vessiot group of Appel’s system of hypergeometric differential equations and infiniteness of monodromy group, preprint 1979.Google Scholar
[21] Schechtman, V.V. and Varchenko, A.N., Arrangements of hyperplanes and Lie algebra homology, Invent. Math., 106 (1991), 139194.Google Scholar
[22] Selberg, A., Bemerkninger om et Mulitiplet Integral, Norsk Mat. Tidsskrift, 26 (1944), 7178.Google Scholar
[23] Serre, J.P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourie, 6 (1956), 142.Google Scholar
[24] Takano, K., and Bannai, E., A global study of Jordan-Pochhammer differential equations, Funkcial. Ekvak., 19 (1976), 8599.Google Scholar
[25] Tsuchiya, A. and Kanie, Y., Fock space representations of the Virasoro algebra-Intertwining operators, Publ. RIMS. Kyoto Univ., 22 (1986), 259327.CrossRefGoogle Scholar
[26] Tsuchiya, A. and Kanie, Y., Vertex operators in conformai field theory on P and monodromy representations of braid group, Adv. Stud. Pure Math., 16 (1988), 297372.Google Scholar