Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-24T05:30:52.989Z Has data issue: false hasContentIssue false

Sobolev and Lipschitz estimates for weighted Bergman projections

Published online by Cambridge University Press:  22 January 2016

Der-Chen Chang
Affiliation:
Department of Mathematics, University of Maryland, College Park, MD 20742, USA, drc@math.umd.edu
Bao Qin Li
Affiliation:
Department of Mathematics, Florida International University, University Park, Miami, FL 33199, USAlibaoqin@zeus.fiu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Ω be a bounded, decoupled pseudo-convex domain of finite type in ℂn with smooth boundary. In this paper, we generalize results of Bonami-Grellier [BG] and Bonami-Chang-Grellier [BCG] to study weighted Bergman projections for weights which are a power of the distance to the boundary. We define a class of operators of Bergman type for which we develop a functional calculus. Then we may obtain Sobolev and Lipschitz estimates, both of isotropic and anisotropic type, for these projections.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1997

References

[BG] Bonami, A. and Grellier, S., Weighted Bergman projections in domains of finite type m C2 , Contemporary Math., 189 (1995), 6580.Google Scholar
[BCG] Bonami, A., Chang, D. C. and Grellier, S., Commutation Properties and Lips-chitz estimates for the Bergman and Szego projections, Math. Zeit., 223 (1996), 275302.Google Scholar
[CNS] Chang, D. C., Nagel, A., and Stein, E. M., Estimates for the ∂-Neumann problem in pseudoconvex domains of finite type in Cn , Acta Math., 169 (1992), 153228.Google Scholar
[CG] Chang, D. C. and Grellier, S., Régularité de la projection de Szegö dans domaines découplés de type fini de Cn , C. R. Acad. Sci. Paris, 315 (1992), 13651370.Google Scholar
[FR] Forelli, F. and Rudin, W., Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J., 24 (1974), 593602.CrossRefGoogle Scholar
[FS] Folland, G. B. and Stein, E. M., Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429522.Google Scholar
[G] Grellier, S., Behavior of holomorphic functions in complex tangential directions in a domain of finite type in Cn , Publicacions Matematiques, 36 (1992), 141.Google Scholar
[K1] Kohn, J. J., Boundaries of complex manifolds, Proceedings, Conference on Complex Analysis, Minneapolis, 1964 (1965), 8194.Google Scholar
[K2] Kohn, J. J., Boundary behavior of ∂ on weakly pseudo-convex manifolds of dimension two, J. Differentail Geom., 6 (1972), 523542.Google Scholar
[Kr] Krantz, S. G., Geometric Analysis and Function Spaces, CBMS, regional Conf. Series in Math. #81, AMS, 1993.Google Scholar
[KS] Kerzman, N. and Stein, E. M., The Szegö kernel in terms of Cauchy-Fantappie kernels, Duke Math. J., 45 (1978), 197224.Google Scholar
[L] Ligocka, E., Forelli-Rudin Constructions and weighted Bergman projections, Studia Math., 94 (1989), 257272.CrossRefGoogle Scholar
[Mc1] McNeal, J., Boundary Behavior of the Bergman kernel function in C2 , Duke Math. J., 58 (1989), 499512.CrossRefGoogle Scholar
[Mc2] McNeal, J., Estimates on the Bergman kernels of convex domains, Advances in Math., 109 (1994), 108139.Google Scholar
[Mc3] McNeal, J., Local geometry of decoupled pseudoconvex domains, Complex Analysis, Vieweg, 1992, pp. 223230.Google Scholar
[McS] McNeal, J. and Stein, E. M., Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., 73 (1994), 177199.Google Scholar
[NRSW] Nagel, A., Rosay, J.-P., Stein, E. M., and Wainger, S., Estimates for the Bergman and Szegö kernels in C2 , Ann. Math., 129 (1989), 113149.CrossRefGoogle Scholar
[NSW] Nagel, A., Sien, E. M., and Wainger, S., Balls and metrics defined by vector fields I: Basic properties, Acta Math., 155 (1985), 103147.CrossRefGoogle Scholar
[R] Rudin, W., Function Theory in the Unit Ball of Cn , Grund. der Math. #241, Springer-Verlag, Berlin-New York, 1980.Google Scholar
[S] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersy, 1993.Google Scholar