Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-18T13:43:43.123Z Has data issue: false hasContentIssue false

Uniform densities on hyperbolic Riemannl surfaces

Published online by Cambridge University Press:  22 January 2016

Mitsuru Nakai*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We are interested in the question how the spaces of solutions of elliptic equations vary according to the variations of underlying regions and coefficients of the equation. We will discuss this question for the case of equations Δu = Pu considered on noncompact Riemann surfaces R. Typically we ask the properties of mappings τx: (R,P) → dim PX(R) from the space Φ of pairs (R, P) of noncompact Riemann surfaces R and densities P on R, i.e. P(z)dxdy are 2-forms on R such that P(z)dxdy ≢ 0 and P(z) ≥ 0 are Hölder continuous with respect to local parameters z = x + iy, into cardinals, where PX(R) are the linear spaces of solutions of Δu = Pu on R with certain boundedness properties X.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Brelot, M.: Sur un théorème de non-existence relatif à l’equation Δu — c(M)u(M) (c ≧ 0), Bull. Sci. Math., 56 (1932), 389395.Google Scholar
[2] Brelot, M.: Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, 1960.Google Scholar
[3] Choquet, M. Brelot-G.: Espace et lignes de Green, Ann. Inst. Fourier, 3 (1951), 199263.Google Scholar
[4] Cornea, C. Constantinescu-A.: Ideale Ränder Riemannscher Flächen, Springer, 1963.Google Scholar
[5] Katz, M. Glasner-R.: On the behavior of solutions of Δu = Pu at the Royden boundary, J. d’Analyse Math., 22 (1969), 345354.Google Scholar
[6] Nakai, M. Glasner-M.: Riemannian manifolds with discontinuous metrics and the Dirichlet integral, Nagoya Math. J., 46 (1972), 148.Google Scholar
[7] Kuramochi, Z.: Harmonic measures and capacity of sets of the ideal boundary, Proc. Japan Acad., 31 (1955), 2530.Google Scholar
[8] Mori, Y. Kusunoki-S.: On the harmonic boundary of an open Riemann surface, Japan. J. Math., 29 (1959), 5256.Google Scholar
[9] Maeda, F.-Y.: Boundary value problems for the equation Δu—qu = O with respect to an ideal boundary, J. Sci. Hiroshima Univ., 32 (1968), 85146.Google Scholar
[10] Miranda, C.: Partial Differential Equations of Elliptic Type, Springer, 1970.Google Scholar
[11] Myrberg, L.: Uber die Existenz der Greenschen Funktion der Gleichung Au — c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954).Google Scholar
[12] Nakai, M.: The space of Dirichlet-finite solutions of the equation Δu—Pu on a Riemann surface, Nagoya Math. J., 18 (1961), 111131..Google Scholar
[13] Nakai, M.: Bordered Riemann surface with parabolic double, Proc. Japan Acad., 37 (1961), 553555.Google Scholar
[14] Nakai, M.: Dirichlet finite solutions of Δu = Pu on open Riemann surfaces, Ködai Math. Sem. Rep., 23 (1971), 385397.Google Scholar
[15] Nakai, M.: A remark on classification of Riemann surfaces with respect to Δu = Pu, Bull. Amer. Math. Soc., 77 (1971), 527530.Google Scholar
[16] Nakai, M.: The equation Δu — Pu on Em with almost rotation free P ≧ 0, Töhoku Math. J., 23 (1971), 413431.Google Scholar
[17] Nakai, M.: The equation Δu = Pu on the unit disk with almost rotation free P ≥ 0, J. Diff. Eq., 11 (1972), 307320.CrossRefGoogle Scholar
[18] Nakai, M.: Circle means of Green’s functions, Nagoya Math. J., 49 (1973), 17.Google Scholar
[19] Ozawa, M.: Classification of Riemann surfaces, Ködai Math. Sem. Rep., 4 (1952), 6376.Google Scholar
[20] Ozawa, M.: A set of capacity zero and the equation Δu = Pu, Ködai Math. Sem. Rep., 12 (1960), 7681.Google Scholar
[21] Royden, H.: The equation Δu—Pu and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959).Google Scholar
[22] Sario, L.: Sur la classification des surfaces de Riemann, 11th Scand. Congr. Math. Trondheim, 1949, 229238.Google Scholar
[23] Nakai, L. Sario-M.: Classification Theory of Riemann Surfaces, Springer, 1970.Google Scholar