Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-05T18:31:01.531Z Has data issue: false hasContentIssue false

Life in the last few million years

Published online by Cambridge University Press:  26 February 2019

Jeremy B. C. Jackson
Affiliation:
Geosciences and Marine Biology Research Divisions, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0244 Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama. E-mail: jbcj@ucsd.edu
Kenneth G. Johnson
Affiliation:
Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0244. E-mail: kenjohnson@ucsd.edu

Abstract

The excellent fossil record of the past few million years, combined with the overwhelming similarity of the biota to extant species, provides an outstanding opportunity for understanding paleoecological and macroevolutionary patterns and processes within a rigorous biological framework. Unfortunately, this potential has not been fully exploited because of lack of well-sampled time series and adequate statistical analysis. Nevertheless, four basic patterns appear to be of general significance. First, a major pulse of extinction occurred 1–2 m.y. ago in many ocean basins, more or less coincident with the intensification of glaciation in the Northern Hemisphere. Rates of origination also increased greatly but were more variable in magnitude and timing. The fine-scale correlation of these evolutionary events with changes in climate is poorly understood. Similar events probably occurred on land but have not been tested adequately. Second, rates of origination and extinction in the oceans waned after the pulse of extinction, especially during the past 1 m.y. Thus, most marine species originated long before the Pleistocene under very different environmental circumstances, suggesting that they are “exapted” rather than adapted to their present ecological circumstances. The same may be true for many terrestrial groups, but not for the mammals or fresh-water fishes that have continued to undergo speciation throughout the Pleistocene. Third, community membership of late Pleistocene coral reef communities was more stable than expected by chance. These are the only paleoecological data adequate to test hypotheses of community stability, so that we do not know whether community structure involving other taxa or environments typically reflects more than the collective behavior of individual species distributions. Regardless, the strong evidence for nearly universal exaptation of ecological characteristics argues strongly against ideas of coevolution of species in communities. Finally, ecological communities were profoundly altered by human activities long before modern ecological studies began. Holocene paleontological, archeological, and historical data constitute the only ecological baseline for “pristine” ecological communities before significant human disturbance. Holocene records should be much more extensively used as a baseline for Recent ecological studies and for conservation and management.

Type
Research Article
Copyright
Copyright © 2000 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1993. Diversity of Atlantic coastal plain mollusks since the Pliocene. Science 260:16261629.Google Scholar
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1996. Diversity of Pliocene-Recent mollusks in the Western Atlantic: extinction, origination, and environmental change. Pp. 271302 in Jackson et al. 1996a.Google Scholar
Aronson, R. B., and Precht, W. F. 1997. Stasis, biological disturbance, and community structure of a Holocene coral reef. Paleobiology 23:326346.Google Scholar
Aronson, R. B., Precht, W. F., and Macintyre, I. G. 1998. Extrinsic control of species replacement on a Holocene reef in Belize: the role of coral disease. Coral Reefs 17:223230.Google Scholar
Azzaroli, A. 1992. Ascent and decline of monodactyl equids: a case for prehistoric overkill. Annals Zoologica Fennici 28:151163.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic environments through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Bambach, R. K., and Bennington, J. B. 1996. Statistical testing for paleocommunity recurrence: are similar fossil assemblages ever the same? In Ivany, L. C. and Schopf, K. M., eds. New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 127:107133.Google Scholar
Barnosky, A. D. 1997. Punctuated equilibrium and phyletic gradualism: some facts from the Quaternary mammalian record. Pp. 109147 in Genoways, H. H., ed. Current mammalogy, Vol. 1. Plenum, New York.Google Scholar
Barnosky, A. D., Rouse, T. I., Hadley, E. A., Wood, D. L., Keesing, F. L., and Schmidt, V. A. 1996. Comparison of mammalian response to glacial-interglacial transitions in the middle and late Pleistocene. Pp. 1633 in Stewart, K. M. and Seymour, K. L., eds. Palaeoecology and palaeoenvironments of late Cenozoic mammals. University of Toronto Press, Toronto.Google Scholar
Baumgartner, T. R., Soutar, A., and Ferreira-Bartrina, V. 1992. Reconstruction of the history of northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin, California. California Cooperative Oceanic Fisheries Investigations Reports 33:2440.Google Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., and McBrinn, G. E. 1997. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science 278:15891594.Google Scholar
Bennington, J. B., and Bambach, R. K. 1996. Statistical testing for paleocommunity recurrence: are fossil assemblages ever the same? Palaeogeography, Palaeoclimatology, Palaeoecology 127:83106.Google Scholar
Berger, W. H. 1991. On the extinction of the mammoth: science and myth. Pp. 115132 in Müller, D. W., McKenzie, J. A., and Weissert, H., eds. Controversies in modern geology. Academic Press, London.Google Scholar
Berger, W. H., and Jansen, E. 1994. Mid-Pleistocene climate shift—the Nansen connection. American Geophysical Union Monograph 84:295311.Google Scholar
Beu, A. G. 1990. Molluscan generic diversity of New Zealand Neogene stages: extinction and biostratigraphic events. Palaeogeography, Palaeoclimatology, Palaeoecology 77:279288.Google Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315 in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Brush, G. S. 1994. Case 2: the Chesapeake Bay estuarine system. Pp. 398416 in Roberts, N., ed. The changing global environment. Blackwell, Oxford.Google Scholar
Budd, A. F., and Johnson, K. G. 1999. Origination preceding extinction during late Cenozoic turnover of Caribbean reefs. Paleobiology 25:188200.Google Scholar
Budd, A. F., Stemann, T. A., and Johnson, K. G. 1994. Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. Journal of Paleontology 68:951977.Google Scholar
Budd, A. F., Johnson, K. G., and Stemann, T. F. 1996. Plio-Pleistocene turnover and extinctions in the Caribbean reef-coral fauna. Pp. 168204 in Jackson et al. 1996a.Google Scholar
Cheetham, A. H., and Jackson, J. B. C. 1995. Process from pattern: tests for selection versus random change in punctuated bryozoan speciation. Pp. 184207 in Erwin, D. H. and Anstey, R. L., eds. 1995. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Cheetham, A. H., Jackson, J. B. C., Sanner, J., and Ventocilla, Y. 1999. Neogene and Quaternary cheilostome Bryozoa of tropical America: comparison and contrast between the Central American isthmus (Panama, Costa Rica) and the north-central Caribbean (Dominican Republic). In Collins, L. and Coates, A. G., eds. The Neogene of the Isthmus of Panama: a paleobiotic survey of the Caribbean coast. Bulletins of American Paleontology 357:159192.Google Scholar
Collins, L., and Coates, A. G., eds. 1999. The Neogene of the Isthmus of Panama: a paleobiotic survey of the Caribbean coast. Bulletins of American Paleontology No. 357.Google Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.Google Scholar
Connell, J. H., Hughes, T. P., and Wallace, C. C. 1997. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecological Monographs 67:461488.Google Scholar
Connor, E. F., and Simberloff, D. S. 1978. Species number and compositional similarity of the Galápagos flora and avifauna. Ecological Monographs 48:219248.Google Scholar
Connor, E. F., and Simberloff, D. S. 1979. The assembly of species communities: chance or competition? Ecology 60:11321140.Google Scholar
Coope, G. R. 1979. Late Cenozoic fossil Coleoptera: evolution, biogeography, and ecology. Annual Review of Ecology and Systematics 10:247267.Google Scholar
Coope, G. R. 1994. Insect faunas in Ice Age environments: why so little extinction? Pp. 5574 in Lawton, J. H. and May, R. M., eds. Extinction rates. Oxford University Press, Oxford.Google Scholar
Cooper, S. R., and Brush, G. S. 1991. A 2,500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries 16:617626.Google Scholar
Cronin, T. M. 1987. Evolution, biogeography, and systematics of Puriana: evolution and speciation in Ostracoda. III. Paleontological Society Memoir 21. Journal of Paleontology 61(Suppl.):171.Google Scholar
Crowley, T. J., and North, G. R. 1988. Abrupt climate change and extinction events in earth history. Science 240:9961002.Google Scholar
Dayton, P. K., Thrush, S. F., Agardy, M. T., and Hofman, R. J. 1995. Viewpoint. Environmental effects of marine fishing. Aquatic Conservation: Marine and Freshwater Ecosystems 5:205232.Google Scholar
Dayton, P. K., Tegner, M. J., Edwards, P. B., and Riser, K. L. 1998. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecological Applications 8:309322.Google Scholar
de Menocal, P. B. 1995. Plio-Pleistocene African climate. Science 270:5359.Google Scholar
Diamond, J. M. 1991. The rise and fall of the third chimpanzee. Vintage, London.Google Scholar
Diamond, J. M. 1998. Guns, germs, and steel: the fates of human societies. Norton, New York.Google Scholar
Done, T. 1992. Constancy and change in some Great Barrier Reef coral communities. American Zoologist 32:655662.Google Scholar
Diamond, J. M. 1997. Decadal changes in reef-building communities: implications for reef growth and monitoring programs. Proceedings of the Eighth International Coral Reef Symposium, Panamá 1:411416.Google Scholar
Diamond, J. M. 1999. Coral community adaptability to environmental changes at the scales of regions, reefs, and reef zones. American Zoologist 39:6679.Google Scholar
Elias, S. A. 1994. Quaternary insects and their environments. Smithsonian Institution Press, Washington, D.C. Google Scholar
Estes, J. A., Duggins, D. O., and Rathbun, G. B. 1989. The ecology of extinctions in kelp forest communities. Conservation Biology 3:252264.Google Scholar
FAUNMAP Working Group. 1996. Spatial responses of mammals to late Quaternary environmental fluctuations. Science 272:16011606.Google Scholar
Fisher, D. C. 1987. Mastodont procurement by Paleoindians of the Great Lakes region: hunting or scavenging? Pp. 309421 in Nitecki, M. H. and Nitecki, D. V., eds. The evolution of human hunting. Plenum, New York.Google Scholar
Gallagher, R., and Carpenter, B. 1997. Human-dominated ecosystems. Science 277:485.Google Scholar
Greenstein, B. J., Curran, H. A., and Pandolfi, J. M. 1998. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a Pleistocene perspective. Coral Reefs 17:249261.Google Scholar
Hayek, L. C., and Bura, E. In press. On the ends of the taxon range problem. In Jackson, J. B. C., Lidgard, S., and McKinney, F. K., eds. Process from pattern in the fossil record. University of Chicago Press, Chicago.Google Scholar
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hubbell, S. P. 1997. Niche assembly, dispersal limitation, and the maintenance of diversity in tropical tree communities and coral reefs. Proceedings of the Eighth International Coral Reef Symposium, Panamá 1:387396.Google Scholar
Huber, B. T., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orbigny). Paleobiology 23:3362.Google Scholar
Hughes, T. P. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:15471551.Google Scholar
Hughes, T. P., and Jackson, J. B. C. 1985. Population dynamics and life histories of foliaceous corals. Ecological Monographs 55:141166.Google Scholar
Ivany, L. C., and Schopf, K. M., eds. 1996. New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 127.Google Scholar
Jablonski, D., and Sepkoski, J. J. Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:13671378.Google Scholar
Jackson, J. B. C. 1991. Adaptation and diversity of reef corals. BioScience 41:475482.Google Scholar
Jackson, J. B. C. 1992. Pleistocene perspectives on coral reef community structure. American Zoologist 32:719731.Google Scholar
Jackson, J. B. C. 1994a. Constancy and change of life in the sea. Philosophical Transactions of the Royal Society of London B 344:5560.Google Scholar
Jackson, J. B. C. 1994b. Community unity? Science 264:14121413.Google Scholar
Jackson, J. B. C. 1997. Reefs since Columbus. Coral Reefs 16(Suppl.): S23S32.Google Scholar
Jackson, J. B. C., and Budd, A. F. 1996. Evolution and environment: introduction and overview. Pp. 120 in Jackson et al. 1996a.Google Scholar
Jackson, J. B. C., and Cheetham, A. H. 1994. Phylogeny reconstruction and the tempo of speciation in cheilostome Bryozoa. Paleobiology 20:407423.Google Scholar
Jackson, J. B. C., and Cheetham, A. H. 1999. Tempo and mode of speciation in the sea. Trends in Ecology and Evolution 14:7277.Google Scholar
Jackson, J. B. C., Jung, P., Coates, A. G., and Collins, L. S. 1993. Diversity and extinction of tropical American mollusks and the emergence of the Isthmus of Panama. Science 260:16241626.Google Scholar
Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. 1996a. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., Budd, A. F., and Pandolfi, J. M. 1996b. The shifting balance of natural communities? Pp. 89122 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology: in honor of James W. Valentine. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America. In Collins, L. S. and Coates, A. G., eds. The Neogene of the Isthmus of Panama: a paleobiotic survey of the Caribbean coast. Bulletins of American Paleontology 357:193230.Google Scholar
Janzen, D. H., and Martin, P. S. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:1927.Google Scholar
Johns, G. C., and Avise, J. C. 1998. Tests for ancient species flocks based on molecular phylogenetic appraisals of Sebastes rock-fishes and other marine fishes. Evolution 52:11351146.Google Scholar
Johnson, K. G., and McCormick, T. 1999. The quantitative description of faunal change using paleontological databases. Pp. 227247 in Harper, D., ed. Numerical paleobiology: computer-based modelling and analysis of fossils and their distributions. Wiley, Chichester, England.Google Scholar
Johnson, T. C., Scholz, C. A., Talbot, M. R., Kelts, K., Ricketts, R. D., Ngobi, G., Buening, K., Ssemmanda, I., and McGill, J. W. 1996. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273:10911093.Google Scholar
Kennett, J. P. 1995. A review of polar climatic evolution during the Neogene, based on the marine sediment record. Pp. 4964 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Kidwell, S. M., and Flessa, K. W. 1996. The quality of the fossil record: populations, species, and communities. Annual Review of Earth and Planetary Science 24:433464.Google Scholar
Knowlton, N. 1992. Thresholds and multiple stable states in coral reef community dynamics. American Zoologist 32:674682.Google Scholar
Knowlton, N. In press. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia.Google Scholar
Knowlton, N., and Budd, A. F. In press. Recognizing coral species past and present. In Jackson, J. B. C., Lidgard, S., and McKinney, F. K., eds. Process from pattern in the fossil record. University of Chicago Press, Chicago.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.Google Scholar
Koch, C. F. 1995. Sampling effects, species-sediment relationships, and observed geographic distribution: an uppermost Cretaceous bivalve example. Geobios Mémoire Spécial 18:237241.Google Scholar
Koch, C. F. 1996. Latest Cretaceous mollusc species ‘fabric’ of the US Atlantic and Gulf coastal plain: a baseline for measuring biotic recovery. In Hart, M. B., ed. Biotic recovery from mass extinctions. Geological Society of London Special Publication 102:309317.Google Scholar
Koch, C. F., and Morgan, J. P. 1988. On the expected distribution of species’ ranges. Paleobiology 14:126138.Google Scholar
Koch, C. F., and Sohl, N. F. 1983. Preservational effects in paleoecological studies: cretaceous mollusc examples. Paleobiology 9:2634.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Lange, C. B., Wernheimer, A. L., Reid, F. M. H., and Thunell, R. C. 1997. Sedimentation patterns of diatoms in Santa Barbara Basin, California. California Cooperative Oceanic Fishery Investigation Reports 38:161170.Google Scholar
Lindberg, D. R., and Lipps, J. H. 1996. Reading the chronicle of Quaternary temperate rocky shore faunas. Pp. 161184 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology: in honor of James W. Valentine. University of Chicago Press, Chicago.Google Scholar
MacFadden, B. J. 1992. Fossil horses: systematics, paleobiology, and evolution of the Family Equidae. Cambridge University Press, Cambridge.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.Google Scholar
Martin, P. S., and Klein, R. G., eds. 1984. Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson.Google Scholar
McCune, B., and Medford, M. J. 1997. PC-ORD, Multivariate analysis of ecological data, Version 3.0. MjM Software Design, Gleneden Beach, Ore.Google Scholar
Meyer, A. 1993. Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends in Ecology and Evolution 8:279284.Google Scholar
Nixon, S. W. 1997. Prehistoric nutrient inputs and productivity in Narragansett Bay. Estuaries 20:253261.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. 1996. What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology 22:386405.Google Scholar
Overpeck, J. T., Webb, R. S., and Webb, T. III. 1992. Mapping eastern North American vegetation change of the past 18 ka: noanalogs and the future. Geology 20:10711074.Google Scholar
Paine, R. T., and Levin, S. A. 1981. Intertidal landscapes: disturbance and the dynamics of pattern. Ecological Monographs 51:145178.Google Scholar
Paine, R. T., Tegner, M. J., and Johnson, E. A. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1:535545.Google Scholar
Pandolfi, J. M. 1996. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152176.Google Scholar
Pandolfi, J. M. 1999. Response of Pleistocene coral reefs to environmental change over long temporal scales. American Zoologist 39:113130.Google Scholar
Pandolfi, J. M., and Jackson, J. B. C. 1997. The maintenance of diversity on coral reefs: examples from the fossil record. Proceedings of the Eighth International Coral Reef Symposium, Panamá 1:397404.Google Scholar
Pandolfi, J. M., and Jackson, J. B. C. In press. Community structure of Pleistocene coral reefs of Curaçao, Netherlands Antilles. Ecology.Google Scholar
Pinsof, J. D. 1996. Current status of North American Sangamonian local faunas and vertebrate taxa. Pp. 156190 in Stewart, K. M. and Seymour, K. L., eds. Palaeoecology and palaeoenvironments of late Cenozoic mammals. University of Toronto Press, Toronto.Google Scholar
Potts, D. C. 1984. Generation times and the Quaternary evolution of reef-building corals. Paleobiology 10:4858.Google Scholar
Prentice, I. C., Bartlein, P. J., and Webb, T. III. 1991. Vegetation and climatic change in eastern North America since the last glacial maximum. Ecology 72:20382056.Google Scholar
Raymo, M. E. 1994. The initiation of Northern Hemisphere glaciation. Annual Review of Earth and Planetary Science 22:353383.Google Scholar
Roughgarden, J. 1989. The structure and assembly of communities. Pp. 203226 in Roughgarden, J., May, R. M., and Levin, S. A., eds. Perspectives in ecological theory. Princeton University Press, Princeton, N.J. Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1993. Thermally anomalous assemblages revisited: patterns in the extraprovincial latitudinal range shifts of Pleistocene marine mollusks. Geology 23:10711074.Google Scholar
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene paleontology in the northern Dominican Republic. 1. Field surveys, lithology, environment, and age. Bulletins of American Paleontology 89:179.Google Scholar
Schopf, K. M., and Ivany, L. C. 1998. Scaling the ecosystem: a hierarchical view of stasis and change. Pp. 187211 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Sepkoski, J. J. Jr., and Koch, C. F. 1995. Evaluating paleontological data relating to bio-events. Pp. 2134 in Walliser, O. M., ed. Global biological events in earth history. Springer, Berlin.Google Scholar
Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J. P., Kaltenback, A. J., Krumseik, K. A. O., Morton, A. C., Murray, J. W., and Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620623.Google Scholar
Signor, P. J., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Geological Society of America Special Paper 190:291296.Google Scholar
Simenstad, C. A., Estes, J. A., and Kenyon, K. W. 1978. Aleuts, sea otters, and alternate stable-state communities. Science 200:403411.Google Scholar
Smith, J. T. 2000. The dynamics of extinction selectivity in the Late Neogene Pectinidae of California. M.S. thesis. University of California, San Diego, La Jolla.Google Scholar
Smith, J. T., and Roy, K. 1999. Late Neogene extinctions and modern regional species diversity: analysis using the Pectinidae of California. Geological Society of America Abstracts with Programs 31:A473.Google Scholar
Stafford, T. W. Jr., Semken, H. A. Jr., Graham, R. W., Klippel, W. F., Markova, A., Smirnov, N. G., and Southon, J. 1999. First accelerator mass spectrometry 14C dates documenting contemporaneity of nonanalog species in late Pleistocene mammal communities. Geology 27:903906.Google Scholar
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1986a. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:1736.Google Scholar
Stanley, S. M. 1986b. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Stanley, S. M. 1996. Children of the ice age. W. H. Freeman, New York.Google Scholar
Stanley, S. M., and Campbell, L. D. 1981. Neogene mass extinction of western Atlantic mollusks. Nature 293:457459.Google Scholar
Stanley, S. M., Wetmore, K. L., and Kennett, J. P. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.Google Scholar
Stehli, F. G., and Webb, S. D. 1985. The Great American biotic interchange. Plenum, New York.Google Scholar
Stemann, T. A., and Johnson, K. G. 1992. Coral assemblages, biofacies, and ecologic zones in the mid-Holocene reef deposits of the Enriquillo Valley, Dominican Republic. Lethaia 25:231241.Google Scholar
Steneck, R. S. 1997. Fisheries-induced biological changes to the structure and function of the Gulf of Maine ecosystem. Pp. 151165 in Wallace, G. T. and Braasch, E. F., eds. Proceedings Gulf of Maine ecosystem dynamics scientific symposium and workshop. RARGOM Report 91-1. Regional Association for Research on the Gulf of Maine, Hanover, N.H. Google Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of taxon ranges. Mathematical Geology 21:411427.Google Scholar
Sutherland, J. P. 1974. Multiple stable points in natural communities. American Naturalist 108:859873.Google Scholar
Valentine, J. W. 1961. Paleoecologic molluscan geography of the California Pleistocene. University of California Publications in Geological Sciences 34:309442.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Clues from the California Pleistocene. Paleobiology 15:8394.Google Scholar
Valentine, J. W., and Jablonski, D. 1991. Biotic effects of sea level change: the Pleistocene test. Journal of Geophysical Research 96:68736878.Google Scholar
Valentine, J. W., and Jablonski, D. 1993. Fossil communities: compositional variation at many time scales. Pp. 341348 in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Vermeij, G. J., and Petuch, E. J. 1986. Differential extinction in tropical American mollusks: endemism, architecture, and the Panama land bridge. Malacologia 27:2941.Google Scholar
Vrba, E. S. 1995. The fossil record of African antelopes. Pp. 385424 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. 1995. Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Webb, S. D., and Rancy, A. 1996. Late Cenozoic evolution of the Neotropical mammal fauna. Pp. 335358 in Jackson et al. 1996a.Google Scholar
Webb, T. III. 1993. Constructing the past from late Quaternary pollen data: temporal resolution and a zoom lens space-time perspective. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:79101. Paleontological Society, Knoxville, Tenn.Google Scholar
Webb, T. III, and Bartlein, P. J. 1992. Global changes during the last three million years: climatic controls and biotic responses. Annual Review of Ecology and Systematics 23:141173.Google Scholar
Wood, B., and Brooks, A. 1999. We are what we ate. Nature 400:219220.Google Scholar
Woodley, J. D., Chornesky, E. A., Clifford, P. A., Jackson, J. B. C., Kaufman, L. S., Knowlton, N., Lang, J. C., Pearson, M. P., Porter, J. W., Rooney, M. C., Rylaarsdam, K. W., Tunnicliffe, V. J., Wahle, C. M., Wulff, J. L., Curtis, A. S. G., Dallmeyer, M. D., Jupp, B. P., Koehl, M. A. R., Neigel, J., and Sides, E. M. 1981. Hurricane Allen's impact on Jamaican coral reefs. Science 214:749755.Google Scholar