Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-27T04:39:02.366Z Has data issue: false hasContentIssue false

Phytoplankton in the embayments of King George Island (Antarctic Peninsula): a review with emphasis on diatoms

Published online by Cambridge University Press:  13 July 2018

Priscila Kienteca Lange
Affiliation:
Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho P. Rocco 211, Prédio CCS, Bl. A, Ilha do Fundão, Rio de Janeiro/RJ, 21941-617, Brazil (prilange@gmail.com)
Ryszard Ligowski
Affiliation:
Laboratory of Polar Biology and Oceanobiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
Denise Rivera Tenenbaum
Affiliation:
Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil

Abstract

Considering that phytoplankton assemblages are good bioindicators of environmental conditions, the sensitivity of the Western Antarctic Peninsula (WAP) to climate change, and the importance of some areas of its islands as Antarctic Specially Managed Areas, this work assembles published datasets on phytoplankton biodiversity and ecology in confined coastal areas (embayments) of King George Island, WAP. Over 33 years (1980–2013), 415 species from 122 genera have been identified to species level, being mostly diatoms (371 species), with 10 new species described with local material (6 diatoms, 4 cyanobacteria). The importance of diatoms was indicated by the frequent occurrence of Corethron pennatum, Pseudogomphonema kamtshaticum, and abundant benthic genera in the plankton (e.g. Navicula, Cocconeis). The increased contribution of dinoflagellates after 2010 suggests marked changes in the water column. Early-summer blooms differ between the bays' eastern and western shores, with terrestrial melting and wind-driven upwelling inducing the dominance of benthic species at eastern shores, whereas planktonic diatoms (Thalassiosira, Pseudo-nizschia, and Chaetoceros) are most abundant along western shores and central areas. The importance of an accurate identification of organisms that are becoming key ecological components of the region is discussed, as recent changes in the microflora may affect the entire marine food web.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased 3 February 2017

References

Ahn, I.-Y., Kang, J.-S., & Kang, S.-H. (1993). Primary food sources for shallow-water benthic fauna in Marian Cove, King George Island during an austral summer. Korean Journal of Polar Research, 4, 6772.Google Scholar
Ahn, I.-Y., Chung, H., Kang, J.-S., & Kang, S.-H. (1994). Preliminary studies on the ecology of neritic marine diatoms in Maxwell Bay, King George Island, Antarctica. Korean Journal of Phycology, 9, 4758.Google Scholar
Ahn, I.-Y., Chung, H., Kang, J.-S., & Kang, S.-H. (1997). Diatom composition and biomass variability in nearshore waters of Maxwell Bay, Antarctica, during the 1992/1993 austral summer. Polar Biology, 17, 123130.Google Scholar
Alba, J.J.B., Tenório, M.M.B., & Tenenbaum, D.R. (2013). Mudanças na comunidade microplanctônica na região rasa da baía do Almirantado, Antártica ao longo do verão austral de 2009/2010. 4° Congresso Brasileiro de Biologia Marinha, Florianópolis/SC, Brazil.Google Scholar
Al-Handal, A.Y., & Wulff, A. (2008). Marine benthic diatoms from Potter Cove, King George Island, Antarctica. Botanica Marina, 51, 5168.Google Scholar
Al-Handal, A.Y., Riaux-Gobin, C., Romero, O.E., & Wulff, A. (2008). Two new marine species of the diatom genus Cocconeis Ehrenberg, C. melchioroides sp. nov. and C. dallmannii sp. nov., from King George Island, Antarctica. Diatom Research, 23, 269281.Google Scholar
Al-Handal, A.Y., Riaux-Gobin, C., & Wulff, A. (2010). Cocconeis pottercovei sp. nov. and Cocconeis pinnata var. matsii var. nov., two new marine diatom taxa from King George Island, Antarctica. Diatom Research, 25, 111.Google Scholar
Balech, E. (1977). El plancton como indicador oceanográfico. In Introduction al fitoplancton marino (pp. 147157). Buenos Aires: Universitaria.Google Scholar
Bezerra, C. (2007). Variações morfométricas do Corethron pennatum Grunow Ostenfeld na Baía do Almirantado, Ilha Rei George, Antártica verão 2002/2003. B.Sc. monograph in Marine Biology, Federal University of Rio de Janeiro, Brazil.Google Scholar
Bezerra, C.R., Lange, P.K., & Tenenbaum, D.R. (2006). Morphometrical variations of Corethron pennatum Grunow Ostenfeld during austral Summer 2002/2003 at Admiralty Bay, Antarctic Peninsula. XXVIII Scientific Initiation Day - CNPq, Rio de Janeiro/RJ, Brazil.Google Scholar
Blazewicz-Paszkowycz, M., & Ligowski, R. (2002). Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea Crustacea. Antarctic Science, 14, 1115. doi: 10.1017/S0954102002000524Google Scholar
Brandini, F.P. (1993). Phytoplankton biomass in an Antarctic coastal environment during stable water conditions - implications for the iron limitation theory. Marine Ecology Progress Series, 93, 267275.Google Scholar
Brandini, F.P., & Rebello, J. (1994). Wind field effect on hydrography and chlorophyll dynamics in the coastal pelagial of Admiralty Bay, King George Island, Antarctica. Antarctic Science, 6, 433442.Google Scholar
Brzezinski, M.A., Dumousseaud, C., Krause, J.W., Measures, C.I., & Nelson, D.M. (2008). Iron and silicic acid concentrations together regulate Si uptake in the equatorial Pacific Ocean. Limnology and Oceanography, 53, 875889.Google Scholar
Calixto, M. (2011). Diatomáceas das Classe Bacillariophyceae e Fragillariophyceae na Baía do Almirantado, Península Antártica. (MSc dissertation). Federal University of Paraná, Brazil.Google Scholar
Campos, L.S., Barboza, C.A.M., Bassoi, M., Bernardes, M., Bromberg, S., Corbisier, T.N., . . . Yoneshigue-Valentin, Y. (2013). Environmental processes, biodiversity and changes in Admiralty Bay, King George Island, Antarctica. In Verde, C. & di Prisco, G., (Eds), Adaptation and Evolution in Marine Environments. Volume 2: The Impacts of Global Change on Biodiversity (pp. 127156). Heidelberg: Springer.Google Scholar
Chang, K.H., Jun, H.K., Park, G.T., & Eo, Y.S. (1990). Oceanographic conditions of Maxwell Bay, King George Island, Antarctica austral summer 1989. Korean Journal of Polar Research, 1, 2746.Google Scholar
Chung, K.H., Kang, S.-H., Kang, J.-S., Lee, S., & Kim, D.-Y. (2000). Photosynthetic parameters of phytoplankton assemblages in the surface water of Maxwell Bay and the Weddell Sea during the 1996/97 Austral summer. Korean Journal of Polar Research, 11, 1926.Google Scholar
Clarke, A., Barnes, D.K.A., & Hodgson, D.A. (2005). How isolated is Antarctica? Trends in Ecology and Evolution, 20, 13. doi: 10.1016/j.tree.2004.10.004Google Scholar
Corbisier, T.N., Petti, M.V., Skowronski, R.S.P., & Brito, T.A.S. (2004). Trophic relationships in the nearshore zone of Martel Inlet King George Island, Antarctica, 13C stable-isotope analysis. Polar Biology, 27, 7582.Google Scholar
Fernandes, L.F., Calixto, M., Lange, P.K., & Tenenbaum, D.R. (2013). Benthic diatoms in the plankton of Admiralty Bay (Western Antarctic Peninsula): taxonomy and potential implications to the pelagic community. In Valentin, Y.Y., Dalto, A.G., Lavrado, H.P. (Eds), Annual Activity Report of National Institute of Science and Technology Antarctic Environmental Research (INCT-APA) – 2012 (pp. 102108). São Carlos, Brazil: Editora Cubo.Google Scholar
Fernandes, L.F., & Procopiak, L.K. (2001). Morfologia das frústulas em microscopia eletrônica das diatomáceas bênticas Navicula directa e N. glaciei. 52° Congresso Brasileiro de Botânica, João Pessoa, Brazil.Google Scholar
Fernandes, L.F., & Procopiak, L.K. (2003). Observations on valve structures of Navicula directa Wm. Smith Ralfs in Pritchard and Navicula glaciei V. Heurck from rocky substracts in Antarctic Peninsula. Hoehnea, 30, 110.Google Scholar
Fernandes, L.F., Procopiak, L.K., & Portinho, D. (2007). Brandinia mosimanniae gen. nov. et sp. nov., a new marine epilithic diatom from the Antarctic coasts. Diatom Research, 22, 4556.Google Scholar
Fernandes, L.F., & Souza-Mosimann, R.M. (2001). The marine epilithic diatom Melosira brandinii sp. nov. (Bacillariophyta) from Elephant Island, Antarctic Peninsula, with comments on some related species. Brazilian Journal of Oceanography, 49, 112. doi: 10.1590/S1413-77392001000100001Google Scholar
Gili, J.M., Alva, V., Pages, F., Kloser, H., & Arntz, W.E. (1996). Benthic diatoms as the major food source in the sub-Antarctic marine hydroid Silicularia rosea. Polar Biology, 16, 507512.Google Scholar
Guiry, M.D., & Guiry, G.M. (2017). AlgaeBase. Retrieved 10 November 2017 from http://www.algaebase.org.Google Scholar
Gutt, J., Barratt, I., Domack, E.C., D'acoz, C.U., Dimmler, W., Gre'Mare, A., . . . Smith, C. (2011). Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Research II, 58, 7483.Google Scholar
Hasle, G.R. (1965). Nitzschia and Fragilariopsis species studied in the light and electron microscope. 2. The group Pseudonitzschia. Skrifter Norske Vidensk Akademia, 18, 145.Google Scholar
Hofmann, E.E., Wiebe, P.H., Costa, D.P., & Torres, J.J. (2004). Integrated ecosystem studies of Western Antarctic Peninsula continental shelf waters and related Southern Ocean regions. Deep-Sea Research II, 51, 19212344.Google Scholar
Hutchins, D.A., & Bruland, K.W. (1998). Iron-limited diatom growth and Si, N uptake ratios in a coastal upwelling regime. Nature, 393, 561564.Google Scholar
Jiang, M., Barbeau, K.A., Selph, K.E., Measures, C.I., Buck, K.N., Azam, F., . . . Zhou, M. (2013). The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: a modeling study. Deep Sea Research II, 90, 112133. doi: 10.1016/j.dsr2.2013.01.029Google Scholar
Kang, S.-H., Kang, J.-S., Chung, K.-H., Lee, M.-Y., Lee, B.-Y., Chung, H., . . . Kim, D.-Y. (1997a). Seasonal variation of nearshore Antarctic microalgae and environmental factors in Marian Cove, King George Island, 1996. Korean Journal of Polar Research, 8, 927.Google Scholar
Kang, J.-S., Kang, S.-H., Lee, J. H., Chung, K.-H., & Lee, M.-Y. (1997b). Antarctic micro- and nano-sized phytoplankton assemblages in the surface water of Maxwell Bay during the 1997 austral summer. Korean Journal of Polar Research, 8, 3545.Google Scholar
Kang, J.-S., Kang, S.-H., & Lee, J.H. (1999). Cryophilic diatoms Navicula glaciei/perminuta in Antarctic coastal environment. I. Morphology and ecology. Algae, 14, 169179.Google Scholar
Kang, J.-S., Kang, S.-H., Lee, J.H., & Lee, S.H. (2002). Seasonal variation of microalgal assemblages at a fixed station in King George Island, Antarctica, 1996. Marine Ecology Progress Series, 229, 1932.Google Scholar
Kittel, W., & Ligowski, R. (1980). Algae found in the food of Euphausia crystallorophias Crustacea. Polish Polar Research, 1, 129137.Google Scholar
Klöser, H., Schloss, I., Mercuri, G., Laturnus, F., & Curtosi, A. (1993). Seasonal variation of algal growth conditions in sheltered Antarctic bays, the example of Potter Cove King George Island, South Shetlands. Journal of Marine Systems, 4, 289301.Google Scholar
Klöser, H. (1998). Habitats and distribution patterns of benthic diatoms in Potter Cove King George Island, Antarctica and its vicinity. Berichte zur Polarforschung, 299, 95105.Google Scholar
Komarek, J. (2007). Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Polish Polar Research, 28, 211231.Google Scholar
Kopczynska, E.E. (1980). Small-scale vertical distribution of phytoplankton in Ezcurra Inlet, Admiralty Bay, South Shetland Islands. Polish Polar Research, 1, 7796.Google Scholar
Kopczynska, E.E. (1981). Periodicity and composition of summer phytoplankton in Ezcurra Inlet, Admiralty Bay, King George Island, South Shetland Islands. Polish Polar Research, 2, 5570.Google Scholar
Kopczynska, E.E. (1992). Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. Journal of Plankton Research, 14, 10311054.Google Scholar
Kopczynska, E.E. (1993). Net phytoplankton annual cycle February 1990–January 1991 in Admiralty Bay, King George Island, West Antarctic. Polish Polar Research, 14, 383392.Google Scholar
Kopczyńska, E.E. (1996). Annual study of phytoplankton in Admiralty Bay, King George Island, Antarctica March 1994-February 1995. Polish Polar Research, 17, 151164.Google Scholar
Kopczynska, E.E. (1999). Winter and summer phytoplankton populations in admiralty bay, Antarctica, with special reference to nanoplanktonic diatoms. Polish Polar Studies, XXVI Polar Symposium, 29.Google Scholar
Kopczynska, E.E. (2008). Phytoplankton variability in Admiralty Bay, King George Island, South Shetland Islands, six years of monitoring. Polish Polar Research, 29, 117139.Google Scholar
Kozlova, O.G. (1964). Diatomovye vodorosli Indijskogo and Tichookeankogo sektorov Antarktiki. Moscow: Nauka.Google Scholar
Lange, P. K. (2011). Phytoplankton at Admiralty Bay Antarctica, temporal and spatial variations between the years of 2002 and 2008 (MSc dissertation). Federal University of Rio Grande, Brazil.Google Scholar
Lange, P.K., Tenenbaum, D.R., & Campos-Creasey, L.S. (2004). Microphytoplankton specific composition in shallow coastal waters at Admiralty Bay, Antarctica summer 2002/2003. 56a Science Progress Brazilian Society Meeting, Cuiabá/MT, Brazil.Google Scholar
Lange, P.K., Tenenbaum, D.R., & Campos, L.S. (2006). Diatom flora inter-annual variation in coastal waters at Admiralty Bay, King George Island, Antarctica. XXIX SCAR Open Science Conference, Hobart, Tazmania.Google Scholar
Lange, P.K., Tenenbaum, D.R., & Campos, L.S. (2008). Microvariation in the phytoplankton assemblages structure at Marte Inlet King George Island, Antarctica during a 24 hours period. XVI Antarctic Research Symposium, São Paulo/SP, Brazil.Google Scholar
Lange, P.K., Tenenbaum, D.R., Campos, L.S., & Garcia, V.M.T. (2010). Microphytoplankton at Admiralty Bay King George Island, Antarctica, A four-years monitoring programme in shallow waters. XXXI SCAR Open Science Conference, Buenos Aires, Argentina.Google Scholar
Lange, P.K., Tenenbaum, D.R., Santis Braga, E., & Campos, L.S. (2007). Microphytoplankton assemblages in shallow waters at Admiralty Bay King George Island, Antarctica during the summer 2002–2003. Polar Biology, 30, 14831492. doi: 10.1007/s00300-007-0309-8Google Scholar
Lange, P.K., Tenenbaum, D.R., Tavano, V.M., Paranhos, R., & Campos, L.S. (2014). Shifts in microphytoplankton species and cell size at Admiralty Bay, Antarctica. Antarctic Science, 27, 225239. doi: 10.1017/S0954102014000571Google Scholar
Ligowski, R. (1986). Net phytoplankton of Admiralty Bay in 1983 King George Island, South Shetland Islands. Polish Polar Research, 7, 127154.Google Scholar
Ligowski, R. (1987). Sea ice microalgae community of the floating ice in Admiralty Bay South Shetland Islands. Polish Polar Research, 8, 367380.Google Scholar
Ligowski, R. (1992). 9. Mikrofitobentos. In Rakusa-Suszczewski, S. (Ed.), Zatoka Admiralicji. Ekosystem strefy przybrzeżnej morskiej Antarktyki (pp. 8792). Dziekanów Leśny: Oficyna Wydawnicza Instytutu Ekologii PAN.Google Scholar
Ligowski, R. (1993a). Morskie okrzemki Bacillariophyceae w ekosystemie Antarktyki i ich znaczenie jako wskaźnika źródła pokarmu kryla. Łódź: Wydawnictwo Uniwersytetu Łódzkiego.Google Scholar
Ligowski, R. (1993b). 9. Microphytobenthos. In Rakusa-Suszczewski, S. (Ed.), The Maritime Coastal Ecosystem of Admiralty Bay (pp. 5356). Warsaw: Department of Antarctic Biology, Polish Academy of Sciences.Google Scholar
Ligowski, R. (1998). Diatoms in different habitats of Admiralty Bay, Antarctica. In John, P.J., Verlag, A.R.G. Gauther, & Ruggell, K.G. (Eds), Proceedings of the 15th International Diatom Symposium (pp. 173191).Google Scholar
Ligowski, R. (2000). Benthic feeding by krill, Euphausia superba Dana, in coastal waters off West Antarctica and in Admiralty Bay, South Shetland Islands. Polar Biology, 23, 619625.Google Scholar
Ligowski, R., & Kopczynska, E.E. (1993). Phytoplankton. In Rakusa-Suszczewski, S. (Ed.), The Maritime Antarctic Coastal Ecosystem of Admiralty Bay (pp. 4548). Warsaw: Department of Antarctic Biology, Polish Academy of Sciences.Google Scholar
Ligowski, R., Ochwanowski, P., & Kostecka, A. (2008). Seasonal life cycle of Corethron pennatum. In Jasprica, N., Car, A., & Čalić, M. (Eds), Book of Abstracts of 20th International Diatom Symposium (pp. 713). Dubrovnik, Croatia.Google Scholar
Lipski, M. (1987). Variation of physical conditions, nutrients and chlorophyll a contents in Admiralty Bay King George Island, South Shetland Islands, 1979. Polish Polar Research, 8, 307322.Google Scholar
Lipski, M., & Rakusa-Suszczewski, S. (1990). Early summer pattern of vertical distribution of chlorophyll a Bransfield Strait, Antarctica, November 1986. Polish Archives of Hydrobiology, 37, 287293.Google Scholar
Medlin, L.K., & Priddle, J. (1990). Polar Marine diatoms. Cambridge & London: British Antarctic Survey, Natural Environment Research Council.Google Scholar
Mendes, C.R.B., De Souza, M.S., Garcia, V.M.T., Leal, M.C., Brotas, V., & Garcia, C.A.E. (2012). Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep Sea Research I, 65, 114. doi: 10.1016/j.dsr.2012.03.002Google Scholar
Montes-Hugo, M., Doney, S.C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S.E., & Schofield, O. (2009). Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science, 323, 14701473. doi: 10.1126/science.1164533Google Scholar
Montone, R.C., Campos, L.S., Alvarez, C.E., Ito, R.G., Lavrado, H.P., Bícego, M.C., . . . Weber, R.R. (2012). Environmental assessment of Admiralty Bay, King George Island, Antarctica. In Verde, C. & di Prisco, G. (Eds), Adaptation and Evolution in Marine Environments. Volume 2, The Impacts of Global Change on Biodiversity. Heidelberg: Springer.Google Scholar
Nedzarek, A. (2008). Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarctic Science, 20, 135145. doi: 10.1017/S0954102007000909Google Scholar
Nedzarek, A., & Rakusa-Suszczewski, S. (2007). Nutrients and conductivity in precipitation in the coast of King George Island Antarctica in relation to wind speed and penguin colony distance. Polish Journal of Ecology, 55, 705716.Google Scholar
Peter, H.-U., Braun, C., Mustafa, O., & Pfeiffer, S. (2008). Risk assessment for the Fildes Peninsula and Ardley Island and the development of management plans for designation as Antarctic Specially Protected or Managed Areas. Federal Environment Agency (Germany), 344pp.Google Scholar
Pichlmaier, M., Aquino, F.E., Da-Silva, C.S., & Braun, M. (2004). Suspended sediments in Admiralty Bay, King George Island Antarctica. Brazilian Antarctic Research, 4, 7785.Google Scholar
Priddle, J., & Fryxell, G. (1985). Handbook of the Common Plankton Diatoms of the Southern Ocean, Centrales Except the Genus Thalassiosira. Cambridge: British Antarctic Survey.Google Scholar
Procopiak, L. (2001). Levantamento taxonômico de diatomáceas Bacillariophyta epilíticas na Ilha Elefante e Baía do Almirantado, Península Antártica. Monografia de Bacharelado em Ciências Biológicas, Universidade Federal do Paraná, Brazil.Google Scholar
Pruszak, Z. (1980). Currents circulation in the waters of Admiralty Bay region of Arctowski Station on King George Island. Polish Polar Research, 1, 5574.Google Scholar
Rakusa-Suszczewski, S. (1996). Spatial and seasonal variability of temperature and salinity in the Bransfield Strait and Admiralty Bay, Antarctica. Polish Polar Research, 17, 2942.Google Scholar
Robakiewicz, M., & Rakusa-Suszczewski, S. (1999). Application of 3D circulation model to Admiralty Bay, King George Island, Antarctica. Polish Polar Research, 20, 4358.Google Scholar
Roese, M., & Drabble, M. (1998). Wind-driven circulation in Potter Cove. In Wiencke, C., Ferreyra, G., Arntz, W., & Rinaldi, C. (Eds), The Potter Cove Coastal Ecosystem, Antarctica (pp. 4046). Ber. Polarforsch.Google Scholar
Round, F.E., Crawford, R.W., & Mann, D.G. (1990). The Diatoms : Biology & Morphology of the Genera. Cambridge: Cambridge University Press.Google Scholar
Sander, M., Balbão, T.C., Polito, M.J., Costa, E.S., & Carneiro, A.P.B. (2007). Recent decrease in chinstrap penguin Pygoscelis antarctica populations at two of Admiralty Bay's islets on King George Island, South Shetland Islands, Antarctica. Polar Biology, 30, 659661.Google Scholar
Schloss, I.R., Klöser, H., Ferreyra, G., Curtosi, A., Mercuri, G., & Pinola, E. (1997). Factors governing phytoplankton and particulate matter variation in Potter Cove, King George Antarctica. Antarctic Communities, 135141.Google Scholar
Schloss, I.R., Ferreyra, G., & Ruiz-Pino, D. (2002). Phytoplankton biomass in Antarctic shelf zones, a conceptual model based on Potter Cove, King George Island. Journal of Marine Systems, 36, 129143.Google Scholar
Schloss, I., & Ferreyra, G. (2002). Primary production, light and vertical mixing in Potter Cove, a shallow bay in the maritime Antarctic. Polar Biology, 25, 4148.Google Scholar
Schloss, I.R., Abele, D., Moreau, S., Demers, S., Bers, A.V., González, O., & Ferreyra, G. (2012). Response of phytoplankton dynamics to 19-year 1991–2009 climate trends in Potter Cove Antarctica. Journal of Marine Systems, 92, 5366. doi: 10.1016/j.jmarsys.2011.10.006Google Scholar
Schloss, I.R., Ferreyra, G.A., & Curtosi, A. (1998). Phytoplankton primary production in Potter Cove, King George Island. In Wiencke, C., Ferreyra, G., Arntz, W., & Rinaldi, C. (Eds), The Potter Cove coastal ecosystem, Antarctica. Ber. Polarforsch (pp. 6773).Google Scholar
Scott, F.J., & Marchant, H.J. (2005). Antarctic Marine Protists. Australian Biological Resources Study and Australian Antarctic Division. ISBN 0-642-56835-9Google Scholar
Setlik, I. (1979). Cell growth and division of unicellular algal and Cyanophyceae. In Marvan, P., Pribil, S., & Lhotsky, O. (Eds), Algal Assays and Monitoring Eutrophication (pp. 2340). Stuttgart: Schweizerbart'sche Verlagsbuchlrand lung.Google Scholar
Setzer, A., Villela, F.N.J., & Dechiche, A.G.P. (2010). Antarctic meteorology. In Yoneshigue-Valentin, Y., Dalto, A.G., Lavrado, H.P., & de Carvalho, A.L.P.S. (Eds), Annual Activity Report 2009, INCT-APA (pp. 2021). São Carlos, Editora Cubo.Google Scholar
Siciński, J., Jażdżewski, K., Broyer, C. De, Presler, P., Ligowski, R., Nonato, E.F., . . . Campos, L.S. (2011). Admiralty Bay benthos diversity—a census of a complex polar ecosystem. Deep Sea Research II, 58, 3048. doi: 10.1016/j.dsr2.2010.09.005Google Scholar
Skowronski, R.S.P., Gheller, P.F., Bromberg, S., David, C.J., Petti, M.A.V., & Corbisier, T.N. (2009). Distribution of microphytobenthic biomass in Martel Inlet, King George Island Antarctica. Polar Biology, 32, 839851.Google Scholar
Sournia, A., Grall, J.R., & Jacques, G. (1979). Plankton diatoms and dinoflagellates along a meridian transect in the Southern Indian Ocean campagne “Antiprod I” du Marion−dufresne, mars 1977. Marine Botany, 22, 183198.Google Scholar
Souza, J.J.L.L., Schaefer, C.E.G.R., Abrahão, W.A.P., Mello, J.W.V., Simas, F.N.B., Silva, J., & Francelino, M.R. (2012). Hydrogeochemistry of sulfate-affected landscapes in Keller Peninsula, Maritime Antarctica. Geomorphology, 155–156, 5561. doi: 10.1016/j.geomorph.2011.12.017Google Scholar
Tatián, M., Sahade, R., Mercuri, G., Fuentes, V.L., Antacli, J.C., Stellfeldt, A., & Esnal, G.B. (2007). Feeding ecology of benthic filter-feeders at Potter Cove, an Antarctic coastal ecosystem. Polar Biology, 31, 509517.Google Scholar
Tenenbaum, D.R., Lange, P.K., Fernandes, L.F., Calixto, M., Alba, J.J.B., & Garcia, V.M.T. (2010). Plankton structure in a shallow coastal zone at Admiralty Bay, King George Island, West Antarctic Peninsula WAP, composition of phytoplankton and influence of benthic diatoms. In Annual Activity Report of National Institute of Science and Technology Antarctic Environmental Research INCT-APA - 2010 (pp. 121–125).Google Scholar
Tokarczyk, R. (1986). Annual cycle of chlorophyll a in Admiralty Bay 1981–1982 King George Island, South Shetland Islands. Polish Archives of Hydrobiology, 33, 177188.Google Scholar
Tomas, C.R. (1997). Identifying Marine Phytoplankton. California: Academic Press.Google Scholar
Turner, J., Bindschadler, R., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., . . . Summerhayes, C. (2009). Antarctic Climate Change and the Environment, A Contribution to the International Polar Year 2007–2008. Cambridge: SCAR.Google Scholar
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R., Deb, P. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415. doi:10.1038/nature18645Google Scholar
Utermöhl, H. (1958). Perfeccionamento del método cuantitativo del fitoplancton. Comum. Assoc. Int. Limnol. Teor. Apl., 9, 189.Google Scholar
Supplementary material: File

Lange et al. supplementary material

Lange et al. supplementary material 1

Download Lange et al. supplementary material(File)
File 60.9 KB