Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-19T13:22:09.160Z Has data issue: false hasContentIssue false

Aquatic Feasibility of Limbs Application of Tourniquets (AFLAT) during a Lifeguard Water Rescue: A Simulation Pilot Study

Published online by Cambridge University Press:  08 February 2024

Roberto Barcala Furelos
Affiliation:
REMOSS Research Group, Facultade de CC. da Educación e do Deporte, Universidade de Vigo, Pontevedra, Spain Simulation and Intensive Care Unit of Santiago (SICRUS) Research Group, Health Research Institute of Santiago, University Hospital of Santiago de Compostela-CHUS, Santiago de Compostela, Spain
Andrew Schmidt
Affiliation:
Department of Emergency Medicine, University of Florida-Jacksonville, Jacksonville, Florida USA
José Manteiga Urbón
Affiliation:
REMOSS Research Group, Facultade de CC. da Educación e do Deporte, Universidade de Vigo, Pontevedra, Spain
Silvia Aranda García
Affiliation:
GRAFAIS Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain CLINURSID Research Group, Psychiatry, Radiology, Public Health, Nursing and Medicine Department, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, University of Santiago de Compostela, Santiago de Compostela, Spain
Martín Otero-Agra
Affiliation:
REMOSS Research Group, Facultade de CC. da Educación e do Deporte, Universidade de Vigo, Pontevedra, Spain School of Nursing, Universidade de Vigo, Pontevedra, Spain
Nicolò di Tullio
Affiliation:
Sant’Anna School of Advanced Studies, Institute of Management, Piazza Martiri della Libertà, Pisa, Italy
Joel de Oliveira
Affiliation:
REMOSS Research Group, Facultade de CC. da Educación e do Deporte, Universidade de Vigo, Pontevedra, Spain Surfing Medicine International, the Netherlands
Santiago Martínez Isasi*
Affiliation:
Simulation and Intensive Care Unit of Santiago (SICRUS) Research Group, Health Research Institute of Santiago, University Hospital of Santiago de Compostela-CHUS, Santiago de Compostela, Spain CLINURSID Research Group, Psychiatry, Radiology, Public Health, Nursing and Medicine Department, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, University of Santiago de Compostela, Santiago de Compostela, Spain Faculty of Nursing, University of Santiago de Compostela, Santiago de Compostela, Spain
Felipe Fernández-Méndez
Affiliation:
REMOSS Research Group, Facultade de CC. da Educación e do Deporte, Universidade de Vigo, Pontevedra, Spain School of Nursing, Universidade de Vigo, Pontevedra, Spain
*
Correspondence: Santiago Martinez-Isasi Faculty of Nursing University of Santiago de Compostela Av. Xoán XXIII, Spain E-mail: santiago.martinez.isasi@usc.es

Abstract

Introduction:

Control of massive hemorrhage (MH) is a life-saving intervention. The use of tourniquets has been studied in prehospital and battlefield settings but not in aquatic environments.

Objective:

The aim of this research is to assess the control of MH in an aquatic environment by analyzing the usability of two tourniquet models with different adjustment mechanisms: windlass rod versus ratchet.

Methodology:

A pilot simulation study was conducted using a randomized crossover design to assess the control of MH resulting from an upper extremity arterial perforation in an aquatic setting. A sample of 24 trained lifeguards performed two randomized tests: one using a windlass-based Combat Application Tourniquet 7 Gen (T-CAT) and the other using a ratchet-based OMNA Marine Tourniquet (T-OMNA) specifically designed for aquatic use on a training arm for hemorrhage control. The tests were conducted after swimming an approximate distance of 100 meters and the tourniquets were applied while in the water. The following parameters were recorded: time of rescue (rescue phases and tourniquet application), perceived fatigue, and technical actions related to tourniquet skills.

Results:

With the T-OMNA, 46% of the lifeguards successfully stopped the MH compared to 21% with the T-CAT (P = .015). The approach swim time was 135 seconds with the T-OMNA and 131 seconds with the T-CAT (P = .42). The total time (swim time plus tourniquet placement) was 174 seconds with the T-OMNA and 177 seconds with the T-CAT (P = .55). The adjustment time (from securing the Velcro to completing the manipulation of the windlass or ratchet) for the T-OMNA was faster than with the T-CAT (six seconds versus 19 seconds; P < .001; effect size [ES] = 0.83). The perceived fatigue was high, with a score of seven out of ten in both tests (P = .46).

Conclusions:

Lifeguards in this study demonstrated the ability to use both tourniquets during aquatic rescues under conditions of fatigue. The tourniquet with the ratcheting-fixation system controlled hemorrhage in less time than the windlass rod-based tourniquet, although achieving complete bleeding control had a low success rate.

Type
Original Research
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of World Association for Disaster and Emergency Medicine

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chalmers, DJ, Morrison, L. Epidemiology of non-submersion injuries in aquatic sporting and recreational activities. Sports Med. 2003;33(10):745770.CrossRefGoogle ScholarPubMed
Brophy, RH, Bernholt, DL. Aquatic orthopedic injuries. J Am Acad Orthop Surg. 2019;27(6):191199.CrossRefGoogle Scholar
Scala, VA, Hayashi, MS, Kaneshige, J, Haut, ER, Ng, K, Furuta, S. Shark-related injuries in Hawai’i treated at a Level 1 trauma center. Trauma Surg Acute Care Open. 2020;5(1):e000567.CrossRefGoogle ScholarPubMed
Charlton, NP, Swain, JM, Brozek, JL, et al. Control of severe, life-threatening external bleeding in the out-of-hospital setting: a systematic review. Prehosp Emerg Care. 2021;25(2):235267.CrossRefGoogle ScholarPubMed
Rossaint, R, Bouillon, B, Cerny, V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care Lond Engl. 2016;20:100.CrossRefGoogle ScholarPubMed
Alonso-Algarabel, M, Esteban-Sebastià, X, Santillán-García, A, Vila-Candel, R. Tourniquet use in out-of-hospital emergency care: a systematic review. Emerg Rev Soc Espanola Med Emerg. 2019;31(1):4754.Google ScholarPubMed
Szpilman, D, Tipton, M, Sempsrott, J, et al. Drowning timeline: a new systematic model of the drowning process. Am J Emerg Med. 2016;34(11):22242226.CrossRefGoogle ScholarPubMed
Barcala-Furelos, R, Szpilman, D, Palacios-Aguilar, J, et al. Assessing the efficacy of rescue equipment in lifeguard resuscitation efforts for drowning. Am J Emerg Med. 2016;34(3):480485.CrossRefGoogle ScholarPubMed
Kragh, JF, Dubick, MA. Bleeding control with limb tourniquet use in the wilderness setting: review of science. Wilderness Environ Med. 2017;28(2S):S2532.CrossRefGoogle ScholarPubMed
OMNA Maritime Tourniquet. Florida USA: EEUU. 2019. http://www.omnainc.com/collections/maritime-tourniquets/. Accessed October 2023.Google Scholar
US Army. Tactical Combat Casualty Care: Lessons and Best Practices. CreateSpace Independent Publishing Platform; 2014.Google Scholar
OMNA Marine Tourniquet SCUBA Dive Buddy Application. 2019. Disponible en:https://www.youtube.com/watch?v=OCfYafUrm_E. Accessed October 2023.Google Scholar
Foster, C, Florhaug, JA, Franklin, J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115.Google ScholarPubMed
Barcala-Furelos, R, Aranda-García, S, Abelairas-Gómez, C, et al. [Occupational health recommendations for lifeguards in aquatic emergencies in the COVID-19 era: prevention, rescue, and resuscitation]. Rev Esp Salud Publica. 2020;94.Google ScholarPubMed
Sobrido-Prieto, M, Martínez-Isasi, S, Pérez-López, M, Fernández-Méndez, F, Barcala-Furelos, R, Fernández-García, D. Teaching and evaluation methods of the use of the tourniquet in severe limb bleeding among health care professionals: a systematic review. Prehosp Disaster Med. 2021;36(6):747755.CrossRefGoogle ScholarPubMed
Kleinman, ME, Perkins, GD, Bhanji, F, et al. ILCOR scientific knowledge gaps and clinical research priorities for cardiopulmonary resuscitation and emergency cardiovascular care: a consensus statement. Circulation. 2018;137(22):e802819.CrossRefGoogle ScholarPubMed
Morales Toapanta, BH, Pérez Ruiz, ME, Pillajo Peralta, MA, Bonilla López, AR, Romero Frómeta, E, Morán Pedroso, L. [Biomechanical differences and effectiveness of the basketball free throw in optimal condition and in fatigue]. Rev Cuba Investig Bioméd. 2018;37(4):19.Google Scholar
Danna-Dos Santos, A, Poston, B, Jesunathadas, M, Bobich, LR, Hamm, TM, Santello, M. Influence of fatigue on hand muscle coordination and EMG-EMG coherence during three-digit grasping. J Neurophysiol. 2010;104(6):35763587.CrossRefGoogle ScholarPubMed
Schnitzler, C, Button, C, Seifert, L, Armbrust, G, Croft, JL. Does water temperature influence the performance of key survival skills? Scand J Med Sci Sports. 2018;28(3):928938.CrossRefGoogle ScholarPubMed
Deal, VT, McDowell, D, Benson, P, et al. Tactical Combat Casualty Care February 2010. Direct from the Battlefield: TCCC lessons learned in Iraq and Afghanistan. J Spec Oper Med Peer Rev J SOF Med Prof. 2010;10(3):77119.Google ScholarPubMed
Unlu, A, Kaya, E, Guvenc, I, et al. An evaluation of combat application tourniquets on training military personnel: changes in application times and success rates in three successive phases. BMJ Mil Health. 2015;161(4):332335.Google ScholarPubMed