Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T04:24:44.102Z Has data issue: false hasContentIssue false

Death, Decapitation and Display? The Bronze and Iron Age Human Remains from the Sculptor's Cave, Covesea, North-east Scotland

Published online by Cambridge University Press:  05 March 2013

Ian Armit
Affiliation:
Archaeological Sciences, University of Bradford, Richmond Rd, Bradford, West Yorkshire BD7 1DP
Rick Schulting
Affiliation:
School of Archaeology, University of Oxford, 36 Beaumont St, Oxford, OX1 2PG
Christopher J. Knüsel
Affiliation:
Department of Archaeology, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE

Abstract

Excavations at the Sculptor's Cave (north-east Scotland) during the 1930s and 1970s yielded evidence for activity in the Late Bronze Age, Late Iron Age, and early medieval periods, including a substantial human skeletal assemblage with apparent evidence for the removal, curation, and display of human heads. The present project, combining osteological analysis and a programme of AMS dating, aimed to place the surviving human remains from the site into their appropriate chronological context and to relate them to the broader sequence of human activity in the cave. A series of AMS determinations has demonstrated that the human remains fall into two distinct chronological groups separated by a millennium or more: one from the Mid-Late Bronze Age and one from the Late Iron Age. Osteological analysis suggests that while the Bronze Age group may, as previously suggested, include the remains of the heads of juveniles formerly displayed at the cave entrance, this was not the sole mechanism by which human remains arrived in the cave at this time. The Late Iron Age group provides evidence for decapitation and other violent treatments within the cave itself.

Résumé

Des excavations de Sculptor's Cave (Nord-est de l'Ecosse) pendant les années 1930 et 1970 ont révélé des témoignages d'activités de l'âge du bronze final, de l'âge du fer final et du début du moyen âge, y compris un assemblage substantiel de squelettes humains associé à des témoignages d'ablation, de nettoyage et d'exposition de têtes humaines. L'actuel projet, qui associe une analyse ostéologique à un programme de datation AMS avait pour but de replacer les vestiges humains du site qui avaient survécu dans leur contexte chronologique approprié et de les rattacher à la séquence plus étendue des activités humaines dans la grotte. Une série de déterminations AMS a démontré que les restes humains se divisaient en deux groupes chronologiques distincts, séparés au moins par un millénaire: l'un couvrait l'âge du bronze moyen et final et l'autre l'âge du fer final. L'analyse ostéologique donne à penser que, tandis qu'il se peut que le groupe de l'âge du bronze, comme évoqué précédemment, ait compris les restes de têtes de jeunes gens auparavant exposées à l'entrée de la grotte, ce n'était pas le seul mécanisme pour que les restes humains arrivent dans la grotte à cette époque. Le groupe de l'âge du fer final atteste de décapitation et d'autres actes de violence à l'intérieur de la grotte ellemême.

Zussamenfassung

Ausgrabungen in der Sculptor's Höhle in Nordostschottland in den 1930er und 1970er Jahren erbrachten Hinweise auf ihre Nutzung in der Spätbronzezeit, Späteisenzeit und im Frühmittelalter, darunter ein umfangreiches Ensemble menschlicher Knochen, das offenbar Belege für das Entfernen, das Kuratieren und das Zurschaustellen menschlicher Köpfe liefert. Das gegenwärtige Projekt, das osteologische Analyse und ein Programm zur AMS Datierung umfasst, zielte darauf, die erhaltenen menschlichen Überreste des Fundplatzes ihrem jeweiligen chronologischen Kontext zuzuordnen und sie in Beziehung zu setzen zur allgemeinen Abfolge menschlicher Aktivitäten in der Höhle. Eine Serie von AMS-Bestimmungen zeigte, dass die Menschenknochen zwei unterschiedliche chronologische Gruppen bilden, die durch ein Jahrtausend oder mehr getrennt werden: eine aus der mittleren Spätbronzezeit und eine aus der späten Eisenzeit. Osteologische Untersuchungen legen nahe, dass zwar die bronzezeitliche Gruppe, wie bereits vorgeschlagen wurde, auch die Reste von Köpfen juveniler Individuen enthält, die zuvor am Höhleneingang zur Schau gestellt worden waren, dass dies aber nicht die einzige Handlungsweise war, durch die menschliche Überreste in dieser Zeit in die Höhle gelangten. Die späteisenzeitliche Gruppe liefert Hinweise für Enthauptungen und andere gewalttätige Körperbehandlungen in der Höhle selbst.

Resumen

Las excavaciones realizadas en la Cueva del Escultor (noroeste de Escocia) durante los años 30 y en los 70 descubrieron evidencia de actividad en la Tarda Edad del Bronce, la Tarda Edad del Hierro y la Alta Edad Media, que incluye un conjunto de restos óseos humanos que parecen indicar la separación, curación, y exhibición de cabezas humanas. El proyecto de investigación actual combina el análisis osteológico con un programa de dataciones AMS, con el objetivo de situar los restos humanos que se conservan de este yacimiento en el contexto cronológico adecuado, y de ponerlos en relación con la secuencia más amplia de actividad humana en la cueva. Una serie de dataciones AMS ha demostrado que los restos humanos se dividen en dos claros grupos cronológicos separados por más de un milenio: uno de la Edad del Broce Media a Tarda, y el otro de la Tarda Edad del Hierro. El análisis osteológico indica que, tal como ha sido sugerido previamente, mientras que el grupo de la Edad del Bronce puede incluir las cabezas de jóvenes que habían sido previamente expuestas en la entrada de la cueva, este no fue el único procedimiento por el que restos humanos llegaron a la cueva en ese periodo. En el grupo de la Tarda Edad del Hierro hay indicios de decapitación y otros tratamientos violentos dentro de la misma cueva.

Type
Research Article
Copyright
Copyright © The Prehistoric Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Ambrose, S.H. & Krigbaum, J. 2003. Bone chemistry and bioarchaeology. Journal of Anthropological Archaeology 22, 193–9CrossRefGoogle Scholar
Ambrose, S.H. & Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Lambert, J.B. & Grupe, G. (eds), Prehistoric Human Bone: archaeology at the molecular level, 137. New York: Springer-VerlagGoogle Scholar
Armit, I. 2006. Inside Kurtz's compound: headhunting and the human body in prehistoric Europe. In Bonogofsky, M. (ed.), Skull Collection, Modification and Decoration, 114. Oxford: British Archaeological Report S1539Google Scholar
Armit, I. & Ginn, V. 2007. Beyond the grave: human remains from domestic contexts in Atlantic Scotland. Proceedings of the Prehistoric Society 73, 113–34CrossRefGoogle Scholar
Armit, I., Knüsel, C.J., Robb, J. & Schulting, R. J. 2007. Warfare and violence in prehistoric Europe: an introduction. Journal of Conflict Archaeology 2, 111Google Scholar
Barrett, J.H., Beukens, R.P. & Nicholson, R.A. 2001. Diet and ethnicity during the Viking colonization of northern Scotland: evidence from fish bones and stable carbon isotopes. Antiquity 75, 145–54CrossRefGoogle Scholar
Bayliss, A., Bronk Ramsey, C., Plicht, J. van der & Whittle, A. 2007. Bradshaw and Bayes: towards a timetable for the Neolithic. Cambridge Archaeological Journal 17, 128CrossRefGoogle Scholar
Benecke, M. 2008. A brief survey of the history of forensic entomology. Acta Biologica Benrodis 14, 1538Google Scholar
Benton, S. 1931. The excavation of the Sculptor's Cave, Covesea, Morayshire. Proceedings of the Society of Antiquaries of Scotland 65, 177216Google Scholar
Bocherens, H. & Drucker, D. 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13, 4653CrossRefGoogle Scholar
Bogaard, A., Heaton, T.H.E., Poulton, P. & Merbach, I. 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34, 335–43CrossRefGoogle Scholar
Boylston, A., Knüsel, C.J., Roberts, C.A., & Dawson, M. 2000. Investigation of a Romano-British rural ritual in Bedford, England. Journal of Archaeological Science 27, 241–54CrossRefGoogle Scholar
Britton, D. & Longworth, I.H. 1969. Late Bronze Age finds from Heathery Burn Cave, County Durham. Inventaria Archaeologica (9th Series, GB 55M). London: British MuseumGoogle Scholar
Brooke, A. & Brandon, D. 2004. Tyburn: London's Fatal Tree. Stroud: SuttonGoogle Scholar
Brück, J. 1995. A place for the dead: the role of human remains in Late Bronze Age Britain. Proceedings of the Prehistoric Society 61, 245–77Google Scholar
Bruce, M. nd. Skeletal report: Covesea, Sculptor's Cave. Unpublished typescriptGoogle Scholar
Bryce, T. H. nd. Sculptor's Cave, Covesea, Moray: report on deposits of human bone. Unpublished manuscriptGoogle Scholar
Buck, C. E., Christen, J. A., Kenworthy, J. B., & Litton, C. D. 1994. Estimating the duration of archaeological activity using 14C determinations. Oxford Journal of Archaeology 13, 229–40Google Scholar
Buckberry, J. 2008. Off with their heads: the Anglo-Saxon execution cemetery at Walkington Wold, East Yorkshire. In Murphy, E.M. (ed.), Deviant Burial in the Archaeological Record, 148–68. Oxford: Oxbow BooksGoogle Scholar
Chisholm, B.S., Nelson, D.E. & Schwarz, H.P. 1982. Stable isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216, 1131–2CrossRefGoogle ScholarPubMed
Coles, J. 1960. Scottish Late Bronze Age metalwork: typology, distributions and chronology. Proceedings of the Society of Antiquaries of Scotland 93, 16134CrossRefGoogle Scholar
Delsaux, M. A. 1970. Les ossements humains de l'age du fer. In Mariën, M.-E. (ed.), Le Trou de l'Ambre au Bois de Wérimont, Eprave (Monographies d'Archéologie Nationale 4), 157216. Brussels: Musées Royaux d'Art et d'HistoireGoogle Scholar
Disney, R.H.L. 1994. Scuttle Flies: the Phoridae. London: Chapman & HallCrossRefGoogle Scholar
Duday, H. 1998. Le charnier gaulois de Ribemont-sur-Ancre (Somme). In Etudes et Documents Fouilles 4, Les Celtes: Rites Funéraires en Gaule du Nord entre le VIe et le 1er siècle avant Jesus-Christ, 113–19. Namur: Ministère de la Région WalloneGoogle Scholar
Hedges, R.E.M. & Reynard, L.M. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34, 1240–51Google Scholar
Fraser, I. (ed.). 2008. The Pictish Symbol Stones of Scotland. Edinburgh: Royal Commission on the Ancient & Historical Monuments of ScotlandGoogle Scholar
Hope, V.M. 2000. The treatment of the corpse in ancient Rome. In Hope, V.M. & Marshall, E. (eds), Death and Disease in the Ancient City, 104–27. London: RoutledgeGoogle Scholar
Hunter, F. 2007. Beyond the Edge of the Empire – Caledonians, Picts and Romans. Rosemarkie: Groam HouseGoogle Scholar
Jay, M. 2008. Iron Age diet at Glastonbury Lake Village: the isotopic evidence for negligible aquatic resource consumption. Oxford Journal of Archaeology 27, 201–16CrossRefGoogle Scholar
Jay, M. & Richards, M.P. 2006. Diet in the Iron Age cemetery population at Wetwang Slack, East Yorkshire, UK: carbon and nitrogen stable isotope evidence. Journal of Archaeological Science 33, 653–62CrossRefGoogle Scholar
Jay, M. & Richards, M.P. 2007. British Iron Age diet: stable isotopes and other evidence. Proceedings of the Prehistoric Society 73, 169–90CrossRefGoogle Scholar
Knüsel, C.J. 2005. The physical evidence of warfare – subtle stigmata? In Parker-Pearson, M. & Thorpe, I.J.N. (eds), Warfare, Violence, and Slavery, 4965. Oxford: British Archaeological Report S1374Google Scholar
Knüsel, C.J. & Outram, A.K. 2006. Fragmentation of the body: comestibles, compost, or customary rite? In Gowland, R. & Knüsel, C.J. (eds), Social Archaeology of Funerary Remains, 253–78. Oxford: Oxbow BooksGoogle Scholar
Livy, (Roberts, , Rev. C. (trans.)) 1912. Livy, The History of Rome, Vol. II. London: DentGoogle Scholar
Keillar, I. 1969 Covesea, Parish of Duffus, caves. Discovery and Excavation in Scotland 1969, 34.Google Scholar
Low, A. nd. Covesea Caves, Hopeman. Unpublished manuscriptGoogle Scholar
Low, A. 1930a. Covesea Caves, Hopeman. Unpublished typescriptGoogle Scholar
Low, A. 1930b. Comment on the human bones from Covesea Caves, Hopeman. Unpublished typescript letterGoogle Scholar
Mariën, M.E. 1970. Le Trou de l'Ambre au Bois de Wérimont, Eprave (Monographies d'Archéologie Nationale, 4). Brussels: Musées Royaux d'Art et d'HistoireGoogle Scholar
Mariën, M.E. 1975. Massacre et sacrifice humain: deux cas d'interprétation. In Anati, E. (ed.), Actes du Symposium International sur les Religions de la Préhistoire (Valcamonica Symposium 1972), 253–6. Capo di Monte: Edizioni del CentroGoogle Scholar
Montgomery, J.M., Knüsel, C.J. and Tucker, C.E. 2011 Identifying the origins of decapitated male skeletons from 3 Driffield Terrace, York, through isotope analysis: reflections of the cosmopolitan nature of Roman York, in the time of Caracalla. In Bonogofsky, M. (ed.), The Bioarchaeology of the Human Head: decapitation, decoration, and deformation, 141–78. Gainsville (FL): University Press of FloridaCrossRefGoogle Scholar
Needham, S., Bronk Ramsey, C., Coombs, D., Cartwright, C. & Pettitt, P. B. 1997. An independent chronology for British Bronze Age metalwork: the results of the Oxford Radiocarbon Accelerator Programme Archaeological Journal 154, 55107CrossRefGoogle Scholar
Novak, S. 2000. Battle-related trauma. In Fiorato, V., Boylston, A. & Knüsel, C.J. (eds), Blood Red Roses: the archaeology of a mass grave from Towton, A.D. 1461, 90102. Oxford: Oxbow BooksGoogle Scholar
Outram, A.K. 2002. Bone fracture and within-bone nutrients: an experimentally based method for investigating levels of marrow extraction. In Miracle, P. & Milner, N. (eds), Consuming Passions and Patterns of Consumption, 5163. Cambridge: McDonald Institute for ArchaeologyGoogle Scholar
Philips, C.W. 1931. Final report on the excavations of Merlin's Cave, Symonds Yat. Proceedings of the University of Bristol Spelaeological Society 4(i), 1133Google Scholar
Pitts, M., Bayliss, A., McKinley, J., Boylston, A., Budd, P., Evans, J., Chenery, C., Reynolds, A. & Semple, S. 2002. An Anglo-Saxon decapitation and burial at Stonehenge. Wiltshire Archaeological & Natural History Magazine 95, 131–46Google Scholar
Polybius, (Paton, W.R. (trans.)) 1922. Polybius. The Histories. London: HeinemannGoogle Scholar
Reynolds, A. 2008. Anglo-Saxon Deviant Burial Customs. Oxford: University PressGoogle Scholar
Richards, M.P., Fuller, B.T. & Molleson, T.I. 2006. Staple isotope palaeodietary analysis of humans and fauna from the multi-period (Iron Age, Viking and late Medieval) site of Newark Bay, Orkney. Journal of Archaeological Science 33, 122–31CrossRefGoogle Scholar
Sauer, N.J. 1998. The timing of injuries and manner of death: distinguishing among antemortem, perimortem and postmortem trauma. In Reichs, K.J. & Bass, W.M. (eds), Forensic Osteology: advances in the identification of human remains (2nd edn), 321–32. Springfield: Charles C. ThomasGoogle Scholar
Schoeninger, M.J., DeNiro, M.J. & Tauber, H. 1983. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220, 1381–3.Google Scholar
Schulting, R.J. & Richards, M.P. 2002. The wet, the mild and the domesticated: the Mesolithic–Neolithic transition on the west coast of Scotland. European Jounal of Archaeology 5, 147–89Google Scholar
Schurr, M.R. 1998. Using stable nitrogen isotope ratios to study weaning behavior in past populations. World Archaeology 30, 327–42Google Scholar
Sekulla, M. F. nd. The Coins [from the Sculptor's Cave]. Unpublished typescriptGoogle Scholar
Shepherd, I.A.G. 1995. The Sculptor's Cave, Covesea, Moray: from Bronze Age ossuary to Pictish shrine? Proceedings of the Society of Antiquaries of Scotland 125, 1194–5Google Scholar
Shepherd, I.A.G. 2007. ‘An awesome place’ the Late Bronze Age use of the Sculptor's Cave, Covesea, Moray. In Burgess, C., Topping, P. & Lynch, F. (eds), Beyond Stonehenge: essays on the Bronze Age in honour of Colin Burgess, 194203. Oxford: Oxbow BooksGoogle Scholar
Symes, S.A., Williams, J.A., Murray, E.A., Hoffman, I. M., Holland, T.D., Saul, J. M., Saul, F.P. & Pope, E.J. 2002. Taphonomic context of sharp-force trauma in suspected cases of human mutilation and dismemberment. In Haglund, W.D. & Sorg, M.H. (eds), Advances in Forensic Taphonomy: method, theory and archaeological perspectives, 403–34. Boca Raton: CRC PressGoogle Scholar
Ubelaker, D.H. 1978. Human Skeletal Remains: excavation, analysis, interpretation. Chicago: AldineGoogle Scholar
Wakely, J. 1993. The uses of scanning electron microscopy in the interpretation of some examples of trauma in human skeletal remains. In Grupe, G. & Garland, A.N. (eds), The Histology of Ancient Human Bone, 205–18. Berlin: Springer VerlagGoogle Scholar
Wakely, J. & Bruce, M. F. 1989. Interpreting signs of trauma on a human axis vertebra. Journal of Anatomy 167, 265Google Scholar
Ward, G.K., & Wilson, S.R. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20, 1931CrossRefGoogle Scholar
Warmenbol, E. 1992. Cinq + cinq nouveaux temoins de Sinsin. A propos de dix bronzes du Bronze Final trouves au Trou del Leuve à Sinsin (Nr). Archéo-Situla 1316, 5–15Google Scholar
Warmenbol, E. 2007. Les grottes de Han-sur-Lesse (Centre de Recherches Archéologiques), accessed 29/9/07Google Scholar
Wescott, D. J. 2000. Sex variation in the second cervical vertebra. Journal of Forensic Science 45, 462–66Google Scholar