Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-09T00:43:16.239Z Has data issue: false hasContentIssue false

Optimal decay for solutions of nonlocal semilinear equations with critical exponent in homogeneous groups

Published online by Cambridge University Press:  14 May 2024

Nicola Garofalo
Affiliation:
Dipartimento d'Ingegneria Civile e Ambientale (DICEA), Università di Padova, Via Marzolo, 9 - 35131 Padova, Italy (nicola.garofalo@unipd.it)
Annunziata Loiudice
Affiliation:
Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4 - 70125 Bari, Italy (annunziata.loiudice@uniba.it)
Dimiter Vassilev
Affiliation:
Department of Mathematics and Statistics, University of New Mexico, 311 Terrace Street NE, Albuquerque, NM 87106, USA (vassilev@unm.edu)

Abstract

In this paper, we establish the sharp asymptotic decay of positive solutions of the Yamabe type equation $\mathcal {L}_s u=u^{\frac {Q+2s}{Q-2s}}$ in a homogeneous Lie group, where $\mathcal {L}_s$ represents a suitable pseudodifferential operator modelled on a class of nonlocal operators arising in conformal CR geometry.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bando, S., Kasue, A. and Nakajima, H.. On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97 (1989), 313349.CrossRefGoogle Scholar
Branson, T. P., Fontana, L. and Morpurgo, C.. Moser–Trudinger and Beckner–Onofri's inequalities on the $\operatorname {CR}$ sphere. Ann. Math. (2) 177 (2013), 152.CrossRefGoogle Scholar
Brasco, L., Mosconi, S. and Squassina, M.. Optimal decay of extremals for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55 (2016), 32.CrossRefGoogle Scholar
Brasco, L. and Parini, E.. The second eigenvalue of the fractional $p$-Laplacian. Adv. Calc. Var. 9 (2016), 323355.CrossRefGoogle Scholar
Caffarelli, L. and Silvestre, L.. An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007), 12451260.CrossRefGoogle Scholar
Cowling, M. and Haagerup, U.. Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96 (1989), 507549.CrossRefGoogle Scholar
Cygan, J.. Subadditivity of homogeneous norms on certain nilpotent Lie groups. Proc. Am. Math. Soc. 83 (1981), 6970.CrossRefGoogle Scholar
Fabes, E. B. and Rivière, N. M.. Singular integrals with mixed homogeneity. Stud. Math. 27 (1966), 1938.CrossRefGoogle Scholar
Folland, G. B.. A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79 (1973), 373376.CrossRefGoogle Scholar
Folland, G. B.. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161207.CrossRefGoogle Scholar
Folland, G. B. and Stein, E. M., Hardy spaces on homogeneous groups. Mathematical Notes, Vol. 28 (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982).CrossRefGoogle Scholar
Frank, R. L., del Mar González, M., Monticelli, D. and Tan, J.. An extension problem for the $CR$ fractional Laplacian. Adv. Math. 270 (2015), 97137.CrossRefGoogle Scholar
Frank, R. L., Lenzmann, E. and Silvestre, L.. Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69 (2016), 16711726.CrossRefGoogle Scholar
Frank, R. L. and Lieb, E. H.. Sharp constants in several inequalities on the Heisenberg group. Ann. of Math. (2) 176 (2012), 349381.Google Scholar
Garofalo, N. and Lanconelli, E.. Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ. Math. J. 41 (1992), 7198.CrossRefGoogle Scholar
Garofalo, N., Loiudice, A. and Vassilev, D., Fractional operators and Sobolev spaces on homogeneous groups, preprint 2022.Google Scholar
Garofalo, N. and Tralli, G.. Feeling the heat in a group of Heisenberg type. Adv. Math. 381 (2021), 107635.CrossRefGoogle Scholar
Garofalo, N. and Tralli, G.. A heat equation approach to intertwining. J. Anal. Math. 149 (2023), 113134.CrossRefGoogle Scholar
Garofalo, N. and Tralli, G.. Heat kernels for a class of hybrid evolution equations. Potential Anal. 59 (2023), 823856.CrossRefGoogle Scholar
Garofalo, N. and Vassilev, D.. Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups. Math. Ann. 318 (2000), 453516.CrossRefGoogle Scholar
Garofalo, N. and Vassilev, D.. Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type. Duke Math. J. 106 (2001), 411448.CrossRefGoogle Scholar
Giusti, E.. Direct methods in the calculus of variations (River Edge, NJ: World Scientific Publishing Co Inc., 2003).CrossRefGoogle Scholar
Hebisch, W. and Sikora, A.. A smooth subadditive homogeneous norm on a homogeneous group. Stud. Math. 96 (1990), 231236.CrossRefGoogle Scholar
Ivanov, S., Minchev, I. and Vassilev, D., Solution of the qc Yamabe equation on a 3-Sasakian manifold and the quaternionic Heisenberg group, to appear in Analysis & PDE.Google Scholar
Jannelli, E. and Solimini, S.. Concentration estimates for critical problems. Ricerche Mat. 48 (1999), 233257. no. Special issue: Papers in memory of Ennio De Giorgi.Google Scholar
Jerison, D. and Lee, J.. A subelliptic, nonlinear eigenvalue problem and scalar curvature on $CR$ manifolds. Contemp. Math. 27 (1984), 5763.CrossRefGoogle Scholar
Jerison, D. and Lee, J.. The Yamabe problem on $CR$ manifolds. J. Differ. Geom. 25 (1987), 167197.CrossRefGoogle Scholar
Jerison, D. and Lee, J.. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1 (1988), 113.CrossRefGoogle Scholar
Jerison, D. and Lee, J.. Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ. Geom. 29 (1989), 303343.CrossRefGoogle Scholar
Kaplan, A.. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258 (1980), 147153.CrossRefGoogle Scholar
Kuusi, T., Mingione, G. and Sire, Y.. Nonlocal equations with measure data. Commun. Math. Phys. 337 (2015), 13171368.CrossRefGoogle Scholar
Lanconelli, E. and Uguzzoni, F.. Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group. Boll. Un. Mat. Ital. (8) 1-B (1998), 139168.Google Scholar
Loiudice, A.. Optimal decay of $p$-Sobolev extremals on Carnot groups. J. Math. Anal. Appl. 470 (2019), 619631.CrossRefGoogle Scholar
Marano, S. A. and Mosconi, S. J. N.. Asymptotics for optimizers of the fractional Hardy–Sobolev inequality. Commun. Contemp. Math. 21 (2019), 1850028.CrossRefGoogle Scholar
Palatucci, G. and Piccinini, M.. Nonlocal Harnack inequalities in the Heisenberg group. Calc. Var. Partial Differ. Equ 61 (2022), 185.CrossRefGoogle Scholar
Roncal, L. and Thangavelu, S.. Hardy's inequality for fractional powers of the subLaplacian on the Heisenberg group. Adv. Math. 302 (2016), 106158.CrossRefGoogle Scholar
Roncal, L. and Thangavelu, S.. An extension problem and trace Hardy inequality for the subLaplacian on $H$-type groups. Int. Math. Res. Not. IMRN 14 (2020), 42384294. See also Corrigendum, etc. in Int. Math. Res. Not. IMRN (2022), no. 12, 9598–9602.CrossRefGoogle Scholar
Stein, E. M., Singular integrals and differentiability properties of functions. Princeton Mathematical Series, Vol. 30 (Princeton University Press, Princeton, NJ, 1970), p. xiv+290.Google Scholar
Stein, E. M., Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 173–189. Gauthier-Villars, Paris, 1971.Google Scholar
Vassilev, D.. Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups. Pacific J. Math. 227 (2006), 361397.CrossRefGoogle Scholar
Vassilev, D.. $L^p$ estimates and asymptotic behavior for finite energy solutions of extremals to Hardy–Sobolev inequalities. Trans. Am. Math. Soc. 363 (2011), 3762.CrossRefGoogle Scholar
Vassilev, D.. Corrigenda to ‘$L^p$ estimates and asymptotic behavior for finite energy solutions of extremals to Hardy–Sobolev inequalities. Trans. Am. Math. Soc. 363 (2011), 3762,' https://doi.org/10.48550/arXiv.2210.16888.CrossRefGoogle Scholar
Vétois, J.. A priori estimates and application to the symmetry of solutions for critical $p$-Laplace equations. J. Differ. Equ. 260 (2016), 149161.CrossRefGoogle Scholar
Zhang, Q.. A Liouville type theorem for some critical semilinear elliptic equations on noncompact manifolds. Indiana Univ. Math. J. 50 (2001), 19151936.CrossRefGoogle Scholar