Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-10T05:25:46.639Z Has data issue: false hasContentIssue false

A priori bounds and existence of non-real eigenvalues for singular indefinite Sturm–Liouville problems with limit-circle type endpoints

Published online by Cambridge University Press:  07 June 2019

Fu Sun
Affiliation:
Department of Mathematics, Shandong University(Weihai), Weihai264209, P. R. China (sfmath@163.com; qjg816@163.com)
Jiangang Qi
Affiliation:
Department of Mathematics, Shandong University(Weihai), Weihai264209, P. R. China (sfmath@163.com; qjg816@163.com)

Abstract

The present paper deals with non-real eigenvalues of singular indefinite Sturm–Liouville problems with limit-circle type endpoints. A priori bounds and the existence of non-real eigenvalues of the problem associated with a special separated boundary condition are obtained.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. and Jabon, D.. Indefinite Sturm–Liouville problems, In Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems (eds. Kaper, H., Kwong, M. K. and Zettle, A.). vol. I, pp. 3145 (Argonne, IL: Argonne National Laboratory, 1984).Google Scholar
2Behrndt, J. and Trunk, C.. On the negative squares of indefinite Sturm–Liouville operators. J. Diff. Equ. 238 (2007), 491519.CrossRefGoogle Scholar
3Behrndt, J., Katatbeh, Q. and Trunk, C.. Non-real eigenvalues of singular indefinite Sturm–Liouville operators. Proc. Amer. Math. Soc. 137 (2009), 37973806.CrossRefGoogle Scholar
4Behrndt, J., Philipp, F. and Trunk, C.. Bounds on the non-real spectrum of differential operators with indefinite weights. Math. Ann. 357 (2013), 185213.CrossRefGoogle Scholar
5Behrndt, J., Chen, S., Philipp, F. and Qi, J.. Estimates on the non-real eigenvalues of regular indefinite Sturm–Liouvilleproblems. Proc. Roy. Soc. Edinburgh, A 144 (2014), 11131126.CrossRefGoogle Scholar
6Behrndt, J., Schmitz, P. and Trunk, C.. Bounds on the non-real spectrum of a singular indefinite Sturm–Liouville operator on ℝ. Proc. Appl. Math. Mech. 16 (2016), 881882.CrossRefGoogle Scholar
7Behrndt, J., Schmitz, P. and Trunk, C.. Spectral bounds for singular indefinite Sturm–Liouville operators with L 1-potentials, arXiv: 1709.04994v2 [math.SP] 18 December 2017.Google Scholar
8Binding, P. and Volkmer, H.. Eigencurves for two-parameter Sturm–Liouville equations. SIAM Review 38 (1996), 2748.CrossRefGoogle Scholar
9C̆urgus, B. and Langer, H.. A Krein space approach to symmetric ordinary differential operators with an indefinite weight functions. J. Diff. Equ. 79 (1989), 3161.CrossRefGoogle Scholar
10Fleckinger, J. and Mingarelli, A. B.. On the eigenfunctions of non-definite elliptic operators, In Differential equations. (eds. Knowles, I. W. and Lewis, R. T.). 92,pp. 219227 (The Netherlands: North-Holland, 1984).Google Scholar
11Haupt, O.. Über eine Methode zum Beweis von Oszillationstheoremen. Math. Ann. 76 (1915), 67104.CrossRefGoogle Scholar
12Kong, Q., Möller, M., Wu, H. and Zettl, A.. Indefinite Sturm–Liouville problems. Proc. Roy. Soc. Edinburgh, Sect. A 133 (2003), 639652.CrossRefGoogle Scholar
13Kong, L., Kong, Q., Wu, H. and Zettl, A.. Regular approximations of singular Sturm–Liouville problems with limit-circle endpoints. Result. Math. 45 (2004), 274292.CrossRefGoogle Scholar
14Mingarelli, A. B.. Indefinite Sturm–Liouville problems. Lecture Notes in Math., vol. 964,pp. 519528 (Berlin, New York: Springer, 1982).Google Scholar
15Mingarelli, A. B.. A survey of the regular weighted Sturm–Liouville problem – The non-definite case, arXiv:1106.6013v1 [math.CA], (2011).Google Scholar
16Niessen, H. D. and Zettl, A.. Singular Sturm–Liouville problem: the Friedrichs extension and comparison of eigenvalues. Proc. London Math. Soc. 64 (1992), 545578.CrossRefGoogle Scholar
17Qi, J. and Chen, S.. A priori bounds and existence of non-real eigenvalues of indefinite Sturm–Liouville problems. J. Spectr. Theory 4 (2014), 5363.Google Scholar
18Qi, J., Xie, B. and Chen, S.. The upper and lower bounds on non-real eigenvalues of indefinite Strum-Liouville problems. Pro. Amer. Math. Soc. 144 (2016), 547559.CrossRefGoogle Scholar
19Richardson, R. G. D.. Theorems of oscillation for two linear differential equations of second order with two parameters. Trans. Amer. Math. Soc. 13 (1912), 2234.CrossRefGoogle Scholar
20Xie, B. and Qi, J.. Non-real eigenvalues of indefinite Sturm–Liouville problems. J. Diff. Equ. 8 (2013), 22912301.CrossRefGoogle Scholar
21Zettl, A.. Sturm–Liouville theory. Math. Surveys Monogr., vol. 121 (Providence, RI: Amer. Math. Soc., 2005).Google Scholar