Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-11T09:12:22.637Z Has data issue: false hasContentIssue false

Protein click chemistry and its potential for medical applications

Published online by Cambridge University Press:  15 April 2024

Ahmad Amiri
Affiliation:
Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
Sedigheh Abedanzadeh
Affiliation:
Faculty of Chemistry, Kharazmi University, Tehran, Iran
Bagher Davaeil
Affiliation:
Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
Ahmad Shaabani
Affiliation:
Department of Chemistry, Shahid Beheshti University, Tehran, Iran
Ali A. Moosavi-Movahedi*
Affiliation:
Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
*
Corresponding author: Ali A. Moosavi-Movahedi; Email: moosavi@ut.ac.ir

Abstract

A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afshari, R and Shaabani, A (2018) Materials functionalization with multicomponent reactions: State of the art. ACS Combinatorial Science 20(9), 499528.CrossRefGoogle ScholarPubMed
Agard, NJ, Baskin, JM, Prescher, JA, Lo, A and Bertozzi, CR (2006) A comparative study of bioorthogonal reactions with azides. ACS Chemical Biology 1(10), 644648.CrossRefGoogle ScholarPubMed
Agard, NJ, Prescher, JA and Bertozzi, CR (2004) A strain-promoted [3+2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society 126(46), 1504615047.CrossRefGoogle ScholarPubMed
Alt, K, Paterson, BM, Westein, E, Rudd, SE, Poniger, SS, Jagdale, S, Ardipradja, K, Connell, TU, Krippner, GY and Nair, AK (2015) A versatile approach for the site-specific modification of recombinant antibodies using a combination of enzyme-mediated bioconjugation and click chemistry. Angewandte Chemie International Edition 54(26), 75157519.CrossRefGoogle ScholarPubMed
Anand, N, Jaiswal, N, Pandey, SK, Srivastava, A and Tripathi, RP (2011) Application of click chemistry towards an efficient synthesis of 1, 2, 3-1H-triazolyl glycohybrids as enzyme inhibitors. Carbohydrate Research 346(1), 1625.CrossRefGoogle ScholarPubMed
Angeli, A and Supuran, CT (2023) Click chemistry approaches for developing carbonic anhydrase inhibitors and their applications. Journal of Enzyme Inhibition and Medicinal Chemistry 38(1), 2166503.CrossRefGoogle ScholarPubMed
Archakov, A and Ivanov, YD (2007) Analytical nanobiotechnology for medicine diagnostics. Molecular BioSystems 3(5), 336342.CrossRefGoogle ScholarPubMed
Archakov, AI, Ivanov, YD, Lisitsa, AV and Zgoda, VG (2007) AFM fishing nanotechnology is the way to reverse the Avogadro number in proteomics. Proteomics 7(1), 49.CrossRefGoogle ScholarPubMed
Ataie, G, Moosavi-Movahedi, A, Saboury, A, Hakimelahi, G, Hwu, JR and Tsay, S (2000) Enthalpy and enzyme activity of modified histidine residues of adenosine deaminase and diethyl pyrocarbonate complexes. International Journal of Biological Macromolecules 27(1), 2933.CrossRefGoogle ScholarPubMed
Avci, R, Schweitzer, M, Boyd, RD, Wittmeyer, J, Steele, A, Toporski, J, Beech, I, Arce, FT, Spangler, B and Cole, KM (2004) Comparison of antibody− antigen interactions on collagen measured by conventional immunological techniques and atomic force microscopy. Langmuir 20(25), 1105311063.CrossRefGoogle ScholarPubMed
Balintová, J, Špaček, J, Pohl, R, Brázdová, M, Havran, L, Fojta, M and Hocek, M (2015) Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA–protein interactions. Chemical Science 6(1), 575587.CrossRefGoogle ScholarPubMed
Baranda Pellejero, L, Nijenhuis, MA, Ricci, F and Gothelf, KV (2023) Protein-Templated reactions using DNA-antibody conjugates. Small 19(13), 2200971.CrossRefGoogle ScholarPubMed
Baskin, JM, Prescher, JA, Laughlin, ST, Agard, NJ, Chang, PV, Miller, IA, Lo, A, Codelli, JA and Bertozzi, CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences 104(43), 1679316797.CrossRefGoogle ScholarPubMed
Baslé, E, Joubert, N and Pucheault, M (2010) Protein chemical modification on endogenous amino acids. Chemistry & Biology 17(3), 213227.CrossRefGoogle ScholarPubMed
Bernardes, GJL, Chalker, JM and Davis, BG (2010) Chemical protein modification. In Pignataro, B (ed.). Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life. Wiley-VCH Verlag GmbH & Co. KGaA, pp. 5991. https://doi.org/10.1002/9783527630516.ch3.CrossRefGoogle Scholar
Besser, D, Müller, B, Kleinwächter, P, Greiner, G, Seyfarth, L, Steinmetzer, T, Arad, O and Reissmann, S (2000a) Synthesis and characterization of octapeptide somatostatin analogues with backbone cyclization: Comparison of different strategies, biological activities and enzymatic stabilities. Journal für Praktische Chemie 342(6), 537545.3.0.CO;2-2>CrossRefGoogle Scholar
Besser, D, Reissmann, S, Olender, R, Rosenfeld, R and Arad, O (2000b) Study on the cyclization tendency of backbone cyclic tetrapeptides. Journal of Peptide Research 56(6), 337345.CrossRefGoogle Scholar
Birts, CN, Sanzone, AP, El-Sagheer, AH, Blaydes, JP, Brown, T and Tavassoli, A (2014) Transcription of click-linked DNA in human cells. Angewandte Chemie International Edition 53(9), 23622365.CrossRefGoogle ScholarPubMed
Boutureira, O and Bernardes, GAJ (2015) Advances in chemical protein modification. Chemical Reviews 115(5), 21742195.CrossRefGoogle ScholarPubMed
Brázdilová, P, Vrábel, M, Pohl, R, Pivoňková, H, Havran, L, Hocek, M and Fojta, M (2007) Ferrocenylethynyl derivatives of nucleoside triphosphates: Synthesis, incorporation, electrochemistry, and bioanalytical applications. Chemistry–A European Journal 13(34), 95279533.CrossRefGoogle ScholarPubMed
Campos, LM, Killops, KL, Sakai, R, Paulusse, JM, Damiron, D, Drockenmuller, E, Messmore, BW and Hawker, CJ (2008) Development of thermal and photochemical strategies for thiol− ene click polymer functionalization. Macromolecules 41(19), 70637070.CrossRefGoogle Scholar
Carrico, IS, Carlson, BL and Bertozzi, CR (2007) Introducing genetically encoded aldehydes into proteins. Nature Chemical Biology 3(6), 321322.CrossRefGoogle ScholarPubMed
Carter, KP, Young, AM and Palmer, AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chemical Reviews 114(8), 45644601.CrossRefGoogle ScholarPubMed
Carvalho, FA, Connell, S, Miltenberger-Miltenyi, G, Pereira, SV, Tavares, A, Ariëns, RA and Santos, NC (2010) Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 4(8), 46094620.CrossRefGoogle ScholarPubMed
Çelebi, B, Bayraktar, A and Tuncel, A (2012) Synthesis of a monolithic, micro-immobilised enzyme reactor via click-chemistry. Analytical and Bioanalytical Chemistry 403, 26552663.CrossRefGoogle ScholarPubMed
Chandrasekaran, AR (2016) Programmable DNA scaffolds for spatially-ordered protein assembly. Nanoscale 8(8), 44364446.CrossRefGoogle ScholarPubMed
Chen, I and Ting, AY (2005) Site-specific labeling of proteins with small molecules in live cells. Current Opinion in Biotechnology 16(1), 3540.CrossRefGoogle ScholarPubMed
Chen, T-Y, Cheng, Y-S, Huang, P-S and Chen, P (2018) Facilitated unbinding via multivalency-enabled ternary complexes: New paradigm for protein–DNA interactions. Accounts of Chemical Research 51(4), 860868.CrossRefGoogle ScholarPubMed
Chin, JW, Cropp, TA, Anderson, JC, Mukherji, M, Zhang, Z and Schultz, PG (2003) An expanded eukaryotic genetic code. Science 301(5635), 964967.CrossRefGoogle Scholar
Christian, S, Pilch, J, Akerman, ME, Porkka, K, Laakkonen, P and Ruoslahti, E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. Journal of Cell Biology 163(4), 871878.CrossRefGoogle ScholarPubMed
Chtcheglova, L and Hinterdorfer, P (2011) Simultaneous topography and recognition imaging on endothelial cells. Journal of Molecular Recognition 24(5), 788794.CrossRefGoogle ScholarPubMed
Colak, B, Da Silva, JC, Soares, TA and Gautrot, JE (2016) Impact of the molecular environment on thiol–ene coupling for biofunctionalization and conjugation. Bioconjugate Chemistry 27(9), 21112123.CrossRefGoogle ScholarPubMed
Dadová, J, Vrábel, M, Adámik, M, Brázdová, M, Pohl, R, Fojta, M and Hocek, M (2015) Azidopropylvinylsulfonamide as a new bifunctional click reagent for bioorthogonal conjugations: Application for DNA–protein cross-linking. Chemistry–A European Journal 21(45), 1609116102.CrossRefGoogle ScholarPubMed
Dammer, U, Hegner, M, Anselmetti, D, Wagner, P, Dreier, M, Huber, W and Güntherodt, H-J (1996) Specific antigen/antibody interactions measured by force microscopy. Biophysical Journal 70(5), 24372441.CrossRefGoogle ScholarPubMed
Daniels, JS and Pourmand, N (2007) Label-free impedance biosensors: Opportunities and challenges. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 19(12), 12391257.CrossRefGoogle ScholarPubMed
Dawson, PE and Kent, SB (2000) Synthesis of native proteins by chemical ligation. Annual Review of Biochemistry 69(1), 923960.CrossRefGoogle ScholarPubMed
Dawson, PE, Muir, TW, Clark-Lewis, I and Kent, SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186), 776779.CrossRefGoogle ScholarPubMed
De Groot, CJ, Cadee, JA, Koten, JW, Hennink, WE and Den Otter, W (2002) Therapeutic efficacy of IL-2-loaded hydrogels in a mouse tumor model. International Journal of Cancer 98(1), 134140.CrossRefGoogle Scholar
Debelouchina, GT and Muir, TW (2017) A molecular engineering toolbox for the structural biologist. Quarterly Reviews of Biophysics 50, e7.CrossRefGoogle ScholarPubMed
Derr, ND, Goodman, BS, Jungmann, R, Leschziner, AE, Shih, WM and Reck-Peterson, SL (2012) Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338(6107), 662665.CrossRefGoogle ScholarPubMed
Devaraj, NK and Finn, M (2021) Introduction: Click Chemistry. Chemical Reviews 121(12), 66976698.CrossRefGoogle ScholarPubMed
Devaraj, NK, Weissleder, R and Hilderbrand, SA (2008) Tetrazine-based cycloadditions: Application to pretargeted live cell imaging. Bioconjugate Chemistry 19(12), 22972299.CrossRefGoogle ScholarPubMed
Durmaz, YY, Karagoz, B, Bicak, N, Demirkol, DO, Yalcinkaya, EE, Timur, S and Yagci, Y (2011) Modification of polydivinylbenzene microspheres by a hydrobromination/click-chemistry protocol and their protein-adsorption properties. Macromolecular Bioscience 11(1), 141150.CrossRefGoogle ScholarPubMed
El Haddadi, M, Cavelier, F, Vives, E, Azmani, A, Verducci, J and Martinez, J (2000) All-l-Leu-pro-Leu-pro: A challenging cyclization. Journal of Peptide Science 6(11), 560570.3.0.CO;2-I>CrossRefGoogle Scholar
Elgersma, RC, Van Dijk, M, Dechesne, AC, Van Nostrum, CF, Hennink, WE, Rijkers, DT and Liskamp, RM (2009) Microwave-assisted click polymerization for the synthesis of Aβ (16–22) cyclic oligomers and their self-assembly into polymorphous aggregates. Organic & Biomolecular Chemistry 7(21), 45174525.CrossRefGoogle ScholarPubMed
Engin, K, Leeper, D, Cater, J, Thistlethwaite, A, Tupchong, L and McFarlane, J (1995) Extracellular pH distribution in human tumours. International Journal of Hyperthermia 11(2), 211216.CrossRefGoogle ScholarPubMed
Fan, P-R, Zhao, X, Wei, Z-H, Huang, Y-P and Liu, Z-S (2020) Robust immobilized enzyme reactor based on trimethylolpropane trimethacrylate organic monolithic matrix through “thiol-ene” click reaction. European Polymer Journal 124, 109456.CrossRefGoogle Scholar
Fisher, SA, Baker, AE and Shoichet, MS (2017) Designing peptide and protein modified hydrogels: Selecting the optimal conjugation strategy. Journal of the American Chemical Society 139(22), 74167427.CrossRefGoogle ScholarPubMed
Florin, E-L, Moy, VT and Gaub, HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264(5157), 415417.CrossRefGoogle ScholarPubMed
Freitag, JS, Möser, C, Belay, R, Altattan, B, Grasse, N, Pothineni, BK, Schnauß, J and Smith, DM (2023) Integration of functional peptides into nucleic acid-based nanostructures. Nanoscale 15(17), 76087624.CrossRefGoogle ScholarPubMed
Furst, AL, Hill, MG and Barton, JK (2013) DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection. Langmuir 29(52), 1614116149.CrossRefGoogle ScholarPubMed
Gabius, H-J (Ed.) (2011) The Sugar Code: Fundamentals of Glycosciences. Germany: John Wiley & Sons.Google Scholar
Gamblin, DP, Scanlan, EM and Davis, BG (2009) Glycoprotein synthesis: An update. Chemical Reviews 109(1), 131163.CrossRefGoogle ScholarPubMed
Gan, Y, Li, Y, Zhou, H and Wang, R (2022) Deciphering regulatory proteins of prenylated protein via the FRET technique using nitroso-based ene-ligation and sequential azidation and click reaction. Organic Letters 24(36), 66256630.CrossRefGoogle ScholarPubMed
Gerstberger, S, Hafner, M and Tuschl, T (2014) A census of human RNA-binding proteins. Nature Reviews Genetics 15(12), 829845.CrossRefGoogle ScholarPubMed
Gopi, HN, Tirupula, KC, Baxter, S, Ajith, S and Chaiken, IM (2006) Click chemistry on azidoproline: High-affinity dual antagonist for HIV-1 envelope glycoprotein gp120. ChemMedChem: Chemistry Enabling Drug Discovery 1(1), 5457.CrossRefGoogle ScholarPubMed
Grady, E (2016) Gastrointestinal bleeding scintigraphy in the early 21st century. Journal of Nuclear Medicine 57(2), 252259.CrossRefGoogle ScholarPubMed
Gu, G, Wang, H, Liu, P, Fu, C, Li, Z, Cao, X, Li, Y, Fang, Q, Xu, F and Shen, J (2012) Discovery and structural insight of a highly selective protein kinase inhibitor hit through click chemistry. Chemical Communications 48(22), 27882790.CrossRefGoogle ScholarPubMed
Guilarte, TR (2010) Manganese and Parkinson’s disease: A critical review and new findings. Environmental Health Perspectives 118(8), 10711080.CrossRefGoogle ScholarPubMed
Gunawan, ST, Liang, K, Such, GK, Johnston, AP, Leung, MK, Cui, J and Caruso, F (2014) Engineering enzyme-cleavable hybrid click capsules with a pH-Sheddable coating for intracellular degradation. Small 10(20), 40804086.CrossRefGoogle ScholarPubMed
Gupta, K, Singh, S, Gupta, K, Khan, N, Sehgal, D, Haridas, V and Roy, RP (2012) A bioorthogonal chemoenzymatic strategy for defined protein dendrimer assembly. Chembiochem 13(17), 24892494.CrossRefGoogle ScholarPubMed
Hackenberger, CP and Schwarzer, D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angewandte Chemie International Edition 47(52), 1003010074.CrossRefGoogle ScholarPubMed
Hajizadeh, M, Moosavi-Movahedi, Z, Sheibani, N and Moosavi-Movahedi, AA (2021) An outlook on suicide enzyme inhibition and drug design. Journal of the Iranian Chemical Society 19, 15751592.CrossRefGoogle Scholar
Hakimelahi, GH, Moosavi-Movahedi, AA, Sambaiah, T, Zhu, J-L, Ethiraj, KS, Pasdar, M and Hakimelahi, S (2002) Reactions of purines-containing butenolides with L-cysteine or N-acetyl-L-cysteine as model biological nucleophiles: A potent mechanism-based inhibitor of ribonucleotide reductase caused apoptosis in breast carcinoma MCF7 cells. European Journal of Medicinal Chemistry 37(3), 207217.CrossRefGoogle ScholarPubMed
Hashemnia, S, Ghourchian, H, Moosavi-Movahedi, AA and Faridnouri, H (2009) Direct electrochemistry of chemically modified catalase immobilized on an oxidatively activated glassy carbon electrode. Journal of Applied Electrochemistry 39, 714.CrossRefGoogle Scholar
Hashemnia, S, Moosavi-Movahedi, A, Ghourchian, H, Ahmad, F, Hakimelahi, G and Saboury, A (2006) Diminishing of aggregation for bovine liver catalase through acidic residues modification. International Journal of Biological Macromolecules 40(1), 4753.CrossRefGoogle ScholarPubMed
Hausner, SH, Marik, J, Gagnon, MKJ and Sutcliffe, JL (2008) In vivo positron emission tomography (PET) imaging with an αvβ6 specific peptide radiolabeled using 18F-“click” chemistry: Evaluation and comparison with the corresponding 4-[18F] fluorobenzoyl-and 2-[18F] fluoropropionyl-peptides. Journal of Medicinal Chemistry 51(19), 59015904.CrossRefGoogle ScholarPubMed
Hayashi, R, Morimoto, S and Tomohiro, T (2019) Tag-convertible photocrosslinker with click-on/off N-acylsulfonamide linkage for protein identification. Chemistry 14(18), 31453148.Google ScholarPubMed
He, D, Xie, X, Yang, F, Zhang, H, Su, H, Ge, Y, Song, H and Chen, PR (2017) Quantitative and comparative profiling of protease substrates through a genetically encoded multifunctional photocrosslinker. Angewandte Chemie International Edition 56(46), 1452114525.CrossRefGoogle ScholarPubMed
Heal, WP, Wright, MH, Thinon, E and Tate, EW (2012) Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. Nature Protocols 7(1), 105117.CrossRefGoogle Scholar
Hensarling, RM, Doughty, VA, Chan, JW and Patton, DL (2009) “Clicking” polymer brushes with thiol-yne chemistry: Indoors and out. Journal of the American Chemical Society 131(41), 1467314675.CrossRefGoogle ScholarPubMed
Hill, TA, Shepherd, NE, Diness, F and Fairlie, DP (2014) Constraining cyclic peptides to mimic protein structure motifs. Angewandte Chemie International Edition 53(48), 1302013041.CrossRefGoogle ScholarPubMed
Hocek, M and Fojta, M (2011) Nucleobase modification as redox DNA labelling for electrochemical detection. Chemical Society Reviews 40(12), 58025814.CrossRefGoogle ScholarPubMed
Hong, J, Yang, W-Y, Zhao, Y-X, Xiao, B-L, Gao, Y-F, Yang, T, Ghourchian, H, Moosavi-Movahedi, Z, Sheibani, N and Li, J-G (2013) Catalase immobilized on a functionalized multi-walled carbon nanotubes–gold nanocomposite as a highly sensitive bio-sensing system for detection of hydrogen peroxide. Electrochimica Acta 89, 317325.CrossRefGoogle Scholar
Hoogenboom, R (2010) Thiol–yne chemistry: A powerful tool for creating highly functional materials. Angewandte Chemie International Edition 49(20), 34153417.CrossRefGoogle ScholarPubMed
Horne, JE, Walko, M, Calabrese, AN, Levenstein, MA, Brockwell, DJ, Kapur, N, Wilson, AJ and Radford, SE (2018) Rapid mapping of protein interactions using tag-transfer photocrosslinkers. Angewandte Chemie International Edition 57(51), 1668816692.CrossRefGoogle ScholarPubMed
Horning, KJ, Caito, SW, Tipps, KG, Bowman, AB and Aschner, M (2015) Manganese is essential for neuronal health. Annual Review of Nutrition 35, 71108.CrossRefGoogle ScholarPubMed
Hoyle, CE and Bowman, CN (2010) Thiol–ene click chemistry. Angewandte Chemie International Edition 49(9), 15401573.CrossRefGoogle ScholarPubMed
Hu, S, Zhang, J, Tang, R, Fan, J, Liu, H, Kang, W, Lei, C, Nie, Z, Huang, Y and Yao, S (2019) Click-type protein–DNA conjugation for Mn2+ imaging in living cells. Analytical Chemistry 91(15), 1018010187.CrossRefGoogle ScholarPubMed
Javanbakht, S, Nasiriani, T, Farhid, H, Nazeri, MT and Shaabani, A (2022) Sustainable functionalization and modification of materials via multicomponent reactions in water. Frontiers of Chemical Science and Engineering 16(9), 13181344.CrossRefGoogle Scholar
Javanbakht, S and Shaabani, A (2019) Multicomponent reactions-based modified/functionalized materials in the biomedical platforms. ACS Applied Bio Materials 3(1), 156174.CrossRefGoogle ScholarPubMed
Jewett, JC, Sletten, EM and Bertozzi, CR (2010) Rapid cu-free click chemistry with readily synthesized biarylazacyclooctynones. Journal of the American Chemical Society 132(11), 36883690.CrossRefGoogle ScholarPubMed
Jiang, X, Hao, X, Jing, L, Wu, G, Kang, D, Liu, X and Zhan, P (2019) Recent applications of click chemistry in drug discovery. Expert Opinion on Drug Discovery 14(8), 779789.CrossRefGoogle ScholarPubMed
Jones, MW, Mantovani, G, Ryan, SM, Wang, X, Brayden, DJ and Haddleton, DM (2009) Phosphine-mediated one-pot thiol–ene “click” approach to polymer–protein conjugates. Chemical Communications (35), 52725274.CrossRefGoogle ScholarPubMed
Kamaruddin, MA, Ung, P, Hossain, MI, Jarasrassamee, B, O’Malley, W, Thompson, P, Scanlon, D, Cheng, H-C and Graham, B (2011) A facile, click chemistry-based approach to assembling fluorescent chemosensors for protein tyrosine kinases. Bioorganic & Medicinal Chemistry Letters 21(1), 329331.CrossRefGoogle ScholarPubMed
Karimi, M, Habibi-Rezaei, M, Safari, M, Moosavi-Movahedi, AA, Sayyah, M, Sadeghi, R and Kokini, J (2014) Immobilization of endo-inulinase on poly-D-lysine coated CaCO3 micro-particles. Food Research International 66, 485492.CrossRefGoogle Scholar
Kee, J-M and Muir, TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chemical Biology 7(1), 4451.CrossRefGoogle ScholarPubMed
Kent, SB (2009) Total chemical synthesis of proteins. Chemical Society Reviews 38(2), 338351.CrossRefGoogle ScholarPubMed
Khajeh, K, Naderi-Manesh, H, Ranjbar, B, Akbar Moosavi-Movahedi, A and Nemat-Gorgani, M (2001) Chemical modification of lysine residues in bacillus α-amylases: Effect on activity and stability. Enzyme and Microbial Technology 28(6), 543549.CrossRefGoogle ScholarPubMed
Khodkari, V, Nazeri, MT, Javanbakht, S and Shaabani, A (2023) In situ copper nanoparticle immobilization on the indigo carmine-functionalized chitosan: A versatile biocatalyst towards CO 2 fixation and click reactions in water. Reaction Chemistry & Engineering 8(1), 152163.CrossRefGoogle Scholar
Klose, J, Ehrlich, A and Bienert, M (1998) Influence of proline and β-turn mimetics on the cyclization of penta-and hexapeptides. Letters in Peptide Science 5, 129131.CrossRefGoogle Scholar
Koehler, KC, Anseth, KS and Bowman, CN (2013) Diels–Alder mediated controlled release from a poly (ethylene glycol) based hydrogel. Biomacromolecules 14(2), 538547.CrossRefGoogle ScholarPubMed
Köhler, V and Turner, NJ (2015) Artificial concurrent catalytic processes involving enzymes. Chemical Communications 51(3), 450464.CrossRefGoogle ScholarPubMed
Kolb, HC, Finn, M and Sharpless, KB (2001) Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition 40(11), 20042021.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Kolb, HC and Sharpless, KB (2003) The growing impact of click chemistry on drug discovery. Drug Discovery Today 8(24), 11281137.CrossRefGoogle ScholarPubMed
Kugler, M, Hadzima, M, Dzijak, R, Rampmaier, R, Srb, P, Vrzal, L, Voburka, Z, Majer, P, Řezáčová, P and Vrabel, M (2023) Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage-display and synthetic peptide libraries: Comparison of the methods and structural study. RSC Medicinal Chemistry 14(1), 144153.CrossRefGoogle ScholarPubMed
Kumar, V and Boddeti, DK (2013) 68Ga-radiopharmaceuticals for PET imaging of infection and inflammation. In Baum, R and Rösch, F (eds.). Theranostics, Gallium-68, and Other Radionuclides: A Pathway to Personalized Diagnosis and Treatment, vol 194, Berlin, Heidelberg: Springer, pp. 189–219. https://doi.org/10.1007/978-3-642-27994-2_11CrossRefGoogle Scholar
Lallana, E, Riguera, R and Fernandez-MEGIA, E (2011) Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide–alkyne cycloadditions. Angewandte Chemie International Edition 50(38), 87948804.CrossRefGoogle ScholarPubMed
Lang, K and Chin, JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chemical Reviews 114(9), 47644806.CrossRefGoogle ScholarPubMed
Lange, OJ and Polizzi, KM (2021) Click it or stick it: Covalent and non-covalent methods for protein-self assembly. Current Opinion in Systems Biology 28, 100374.CrossRefGoogle Scholar
Lanyon-Hogg, T, Masumoto, N, Bodakh, G, Konitsiotis, AD, Thinon, E, Rodgers, UR, Owens, RJ, Magee, AI and Tate, EW (2015) Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase. Analytical Biochemistry 490, 6672.CrossRefGoogle ScholarPubMed
Li, C-J and Chan, T-H (1997) Organic reactions in aqueous media. New York: John Wiley & Sons.Google Scholar
Li, H, Aneja, R and Chaiken, I (2013) Click chemistry in peptide-based drug design. Molecules 18(8), 97979817.CrossRefGoogle ScholarPubMed
Li, S, Wong, AH and Liu, F (2014) Ligand-gated ion channel interacting proteins and their role in neuroprotection. Frontiers in Cellular Neuroscience 8, 125.CrossRefGoogle ScholarPubMed
Lin, L, Jiang, L, Ren, E and Liu, G (2023) Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy. Frontiers of Chemical Science and Engineering 17(4), 483489.CrossRefGoogle Scholar
Lin, L, Wang, H, Liu, Y, Yan, H and Lindsay, S (2006) Recognition imaging with a DNA aptamer. Biophysical Journal 90(11), 42364238.CrossRefGoogle ScholarPubMed
Linkuvienė, V, Zubrienė, A, Manakova, E, Petrauskas, V, Baranauskienė, L, Zakšauskas, A, Smirnov, A, Gražulis, S, Ladbury, JE and Matulis, D (2018) Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Quarterly Reviews of Biophysics 51, e10.CrossRefGoogle ScholarPubMed
Liu, J, Abdullah, MA, Yang, L and Wang, J (2019) Fast affinity induced reaction sensor based on a fluorogenic click reaction for quick detection of protein biomarkers. Analytical Chemistry 92(1), 647653.CrossRefGoogle ScholarPubMed
Lodhi, NA, Park, JY, Kim, K, Kim, YJ, Shin, JH, Lee, Y-S, Im, H-J, Jeong, JM, Khalid, M and Cheon, GJ (2019) Development of 99mTc-labeled human serum albumin with prolonged circulation by chelate-then-click approach: A potential blood pool imaging agent. Molecular Pharmaceutics 16(4), 15861595.CrossRefGoogle Scholar
Mahinpour, R, Ghasemi, M, Mosavi Nejad, Z and Zahrayi, Z (2019) The mechanism of inhibitory effect of caffeine from Iranian tea on sigmoidal kinetics of adenosine deaminase enzyme activity. Applied Biology 32(1), 138148.Google Scholar
Maier, K and Wagner, E (2012) Acid-labile traceless click linker for protein transduction. Journal of the American Chemical Society 134(24), 1016910173.CrossRefGoogle ScholarPubMed
Mamidyala, SK and Finn, M (2010) In situ click chemistry: Probing the binding landscapes of biological molecules. Chemical Society Reviews 39(4), 12521261.CrossRefGoogle ScholarPubMed
Manderville, RA and Wetmore, SD (2016) C-linked 8-aryl guanine nucleobase adducts: Biological outcomes and utility as fluorescent probes. Chemical Science 7(6), 34823493.CrossRefGoogle ScholarPubMed
Manetsch, R, Krasiński, A, Radić, Z, Raushel, J, Taylor, P, Sharpless, KB and Kolb, HC (2004) In situ click chemistry: Enzyme inhibitors made to their own specifications. Journal of the American Chemical Society 126(40), 1280912818.CrossRefGoogle ScholarPubMed
Matsumoto, T, Isogawa, Y, Tanaka, T and Kondo, A (2018) Streptavidin-hydrogel prepared by sortase A-assisted click chemistry for enzyme immobilization on an electrode. Biosensors and Bioelectronics 99, 5661.CrossRefGoogle ScholarPubMed
Matyjaszewski, K and Tsarevsky, NV (2014) Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society 136(18), 65136533.CrossRefGoogle ScholarPubMed
Maza, JC, McKenna, JR, Raliski, BK, Freedman, MT and Young, DD (2015) Synthesis and incorporation of unnatural amino acids to probe and optimize protein bioconjugations. Bioconjugate Chemistry 26(9), 18841889.CrossRefGoogle ScholarPubMed
McKay, CS and Finn, M (2014) Click chemistry in complex mixtures: Bioorthogonal bioconjugation. Chemistry & Biology 21(9), 10751101.CrossRefGoogle ScholarPubMed
Meini, N, Ripert, M, Chaix, C, Farre, C, De Crozals, G, Kherrat, R and Jaffrezic-Renault, N (2014) Label-free electrochemical monitoring of protein addressing through electroactivated “click” chemistry on gold electrodes. Materials Science and Engineering: C 38, 286291.CrossRefGoogle ScholarPubMed
Meng, J, Paetzell, E, Bogorad, A and Soboyejo, W (2010) Adhesion between peptides/antibodies and breast cancer cells. Journal of Applied Physics 107(11), 114301.CrossRefGoogle Scholar
Millar, A, Hannan, W, Sapru, R and Muir, A (1979) An evaluation of six kits of technetium 99m human serum albumin injection for cardiac blood pool imaging. European Journal of Nuclear Medicine 4, 9194.CrossRefGoogle ScholarPubMed
Mocharla, VP, Colasson, B, Lee, LV, Röper, S, Sharpless, KB, Wong, CH and Kolb, HC (2005) In situ click chemistry: Enzyme-generated inhibitors of carbonic anhydrase II. Angewandte Chemie 117(1), 118122.CrossRefGoogle Scholar
Moghaddam, AB, Ganjali, MR, Dinarvand, R, Saboury, AA, Razavi, T, Moosavi-Movahedi, AA and Norouzi, P (2007) Fundamental studies of the cytochrome c immobilization by the potential cycling method on nanometer-scale nickel oxide surfaces. Biophysical Chemistry 129(2–3), 259268.CrossRefGoogle ScholarPubMed
Mukhortava, A and Schlierf, M (2016) Efficient formation of site-specific protein–DNA hybrids using copper-free click chemistry. Bioconjugate Chemistry 27(7), 15591563.CrossRefGoogle ScholarPubMed
Murphy, RF, Powers, S and Cantor, CR (1984) Endosome pH measured in single cells by dual fluorescence flow cytometry: Rapid acidification of insulin to pH 6. The Journal of Cell Biology 98(5), 17571762.CrossRefGoogle ScholarPubMed
Musiol, HJ, Siedler, F, Quarzago, D and Moroder, L (1994) Redox-active bis-cysteinyl peptides. I. Synthesis of cyclic cystinyl peptides by conventional methods in solution and on solid supports. Biopolymers: Original Research on Biomolecules 34(11), 15531562.CrossRefGoogle ScholarPubMed
Nabati, F, Habibi-Rezaei, M, Amanlou, M and Moosavi-Movahedi, A (2011) Dioxane enhanced immobilization of urease on alkyl modified nano-porous silica using reversible denaturation approach. Journal of Molecular Catalysis B: Enzymatic 70(1–2), 1722.CrossRefGoogle Scholar
Nåbo, LJ, Madsen, CS, Jensen, KJ, Kongsted, J and Astakhova, K (2015) Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids. Chembiochem 16(8), 11631167.CrossRefGoogle ScholarPubMed
Nakamura, Y, Inomata, S, Ebine, M, Manabe, Y, Iwakura, I and Ueda, M (2010) Click-made” biaryl-linker improving efficiency in protein labelling for the membrane target protein of a bioactive compound. Organic & Biomolecular Chemistry 9(1), 8385.CrossRefGoogle ScholarPubMed
Naya, M and Sato, C (2020) Pyrene excimer-based fluorescent labeling of cysteines brought into close proximity by protein dynamics: ASEM-induced thiol-ene click reaction for high spatial resolution CLEM. International Journal of Molecular Sciences 21(20), 7550.CrossRefGoogle ScholarPubMed
Neuert, G, Albrecht, C, Pamir, E and Gaub, H (2006) Dynamic force spectroscopy of the digoxigenin–antibody complex. FEBS Letters 580(2), 505509.CrossRefGoogle ScholarPubMed
Nienberg, C, Retterath, A, Becher, K-S, Saenger, T, Mootz, HD and Jose, J (2016) Site-specific labeling of protein kinase CK2: Combining surface display and click chemistry for drug discovery applications. Pharmaceuticals 9(3), 36.CrossRefGoogle ScholarPubMed
Nischan, N and Hackenberger, CP (2014) Site-specific PEGylation of proteins: Recent developments. Journal of Organic Chemistry 79(22), 1072710733.CrossRefGoogle ScholarPubMed
Nishimura, T, Hamada, S, Hayashida, K, Uehara, T, Katabuchi, T and Hayashi, M (1989) Cardiac blood-pool scintigraphy using technetium-99m DTPA-HSA: Comparison with in vivo technetium-99m RBC labeling. Journal of Nuclear Medicine 30(10), 17131717.Google ScholarPubMed
Niu, G, Lang, L, Kiesewetter, DO, Ma, Y, Sun, Z, Guo, N, Guo, J, Wu, C and Chen, X (2014) In vivo labeling of serum albumin for PET. Journal of Nuclear Medicine 55(7), 11501156.CrossRefGoogle ScholarPubMed
Norberg, O, Deng, L, Aastrup, T, Yan, M and Ramstrom, O (2011) Photo-click immobilization on quartz crystal microbalance sensors for selective carbohydrate− protein interaction analyses. Analytical Chemistry 83(3), 10001007.CrossRefGoogle ScholarPubMed
Norberg, O, Deng, L, Yan, M and Ramstrom, O (2009) Photo-click immobilization of carbohydrates on polymeric surfaces: A quick method to functionalize surfaces for biomolecular recognition studies. Bioconjugate Chemistry 20(12), 23642370.CrossRefGoogle ScholarPubMed
Oh, K and Guan, Z (2006) A convergent synthesis of new β-turn mimics by click chemistry. Chemical Communications (29), 30693071.CrossRefGoogle ScholarPubMed
Oktay, B, Demir, S and Kayaman-Apohan, N (2019) Preparation of a poly (ethylene glycol)-based cross-linked network from a click reaction for enzyme immobilization. ChemistrySelect 4(20), 60556059.CrossRefGoogle Scholar
Palecek, E and Bartosik, M (2012) Electrochemistry of nucleic acids. Chemical Reviews 112(6), 34273481.CrossRefGoogle ScholarPubMed
Palecek, E, Scheller, F and Wang, J (2005) Electrochemistry of nucleic acids and proteins: Towards electrochemical sensors for genomics and proteomics. Vol. 1, Book series: Perspectives in bioanalysis. Amsterdam, Tokyo: Elsevier.Google Scholar
Palomo, JM (2012) Click reactions in protein chemistry: From the preparation of semisynthetic enzymes to new click enzymes. Organic & Biomolecular Chemistry 10(47), 93099318.CrossRefGoogle ScholarPubMed
Patterson, DM, Nazarova, LA and prescher, JA (2014) Finding the right (bioorthogonal) chemistry. ACS Chemical Biology 9(3), 592605.CrossRefGoogle ScholarPubMed
Peters, W, Willnow, S, Duisken, M, Kleine, H, Macherey, T, Duncan, KE, Litchfield, DW, Lüscher, B and Weinhold, E (2010) Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angewandte Chemie International Edition 49(30), 51705173.CrossRefGoogle ScholarPubMed
Phelps, ME (2000) PET: The merging of biology and imaging into molecular imaging. Journal of Nuclear Medicine 41(4), 661681.Google ScholarPubMed
Porkka, K, Laakkonen, P, Hoffman, JA, Bernasconi, M and Ruoslahti, E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proceedings of the National Academy of Sciences 99(11), 74447449.CrossRefGoogle Scholar
Powell, MF, Stewart, T, Jr Otvos, L, Urge, L, Gaeta, FC, Sette, A, Arrhenius, T, Thomson, D, Soda, K and Colon, SM (1993) Peptide stability in drug development II. Effect of single amino acid substitution and glycosylation on peptide reactivity in human serum. Pharmaceutical Research 10, 12681273.CrossRefGoogle ScholarPubMed
Praetorius, F and Dietz, H (2017) Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355(6331), eaam5488.CrossRefGoogle ScholarPubMed
Prescher, JA and Bertozzi, CR (2005) Chemistry in living systems. Nature Chemical Biology 1(1), 1321.CrossRefGoogle ScholarPubMed
Preston, GW and Wilson, AJ (2013) Photo-induced covalent cross-linking for the analysis of biomolecular interactions. Chemical Society Reviews 42(8), 32893301.CrossRefGoogle ScholarPubMed
Prodromidis, MI (2010) Impedimetric immunosensors—A review. Electrochimica Acta 55(14), 42274233.CrossRefGoogle Scholar
Qin, M, Zong, H and Kopelman, R (2014) Click conjugation of peptide to hydrogel nanoparticles for tumor-targeted drug delivery. Biomacromolecules 15(10), 37283734.CrossRefGoogle ScholarPubMed
Rachel, N and Pelletier, J (2016) One-pot peptide and protein conjugation: A combination of enzymatic transamidation and click chemistry. Chemical Communications 52(12), 25412544.CrossRefGoogle ScholarPubMed
Raliski, BK, Howard, CA and Young, DD (2014) Site-specific protein immobilization using unnatural amino acids. Bioconjugate Chemistry 25(11), 19161920.CrossRefGoogle ScholarPubMed
Ramakrishnan, S, Krainer, G, Grundmeier, G, Schlierf, M and Keller, A (2016) Structural stability of DNA origami nanostructures in the presence of chaotropic agents. Nanoscale 8(19), 1039810405.CrossRefGoogle ScholarPubMed
Ramenda, T, Kniess, T, Bergmann, R, Steinbach, J and Wuest, F (2009) Radiolabelling of proteins with fluorine-18 via click chemistry. Chemical Communications (48), 75217523.CrossRefGoogle ScholarPubMed
Reddy, SK, Cramer, NB and Bowman, CN (2006) Thiol−vinyl mechanisms. 1. Termination and propagation kinetics in thiol−ene photopolymerizations. Macromolecules 39(10), 36733680.CrossRefGoogle Scholar
Rodríguez, DF, Moglie, Y, Ramírez-Sarmiento, CA, Singh, SK, Dua, K and Zacconi, FC (2022) Bio-click chemistry: A bridge between biocatalysis and click chemistry. RSC Advances 12(4), 19321949.CrossRefGoogle ScholarPubMed
Ros, E, Bellido, M, Verdaguer, X, Ribas De Pouplana, L and Riera, A (2020) Synthesis and application of 3-bromo-1, 2, 4, 5-tetrazine for protein labeling to trigger click-to-release biorthogonal reactions. Bioconjugate Chemistry 31(3), 933938.CrossRefGoogle ScholarPubMed
Rostovtsev, VV, Green, LG, Fokin, VV and Sharpless, KB (2002) A stepwise huisgen cycloaddition process: Copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie 114(14), 27082711.3.0.CO;2-0>CrossRefGoogle Scholar
Rück, V, Mishra, NK, Sørensen, KK, Liisberg, MB, Sloth, AB, Cerretani, C, Mollerup, CB, Kjaer, A, Lou, C and Jensen, KJ (2023) Bioconjugation of a near-infrared DNA-stabilized silver nanocluster to peptides and human insulin by copper-free click chemistry. Journal of the American Chemical Society 145(30), 1677116777.CrossRefGoogle ScholarPubMed
Saboury, A and Moosavi-Movahedi, A (1997) A simple novel method for studying the combined inhibitory effects of ethylurea and N, N-dimethylurea on jack bean urease. Journal of Enzyme Inhibition 11(3), 217222.CrossRefGoogle Scholar
Safarian, S, Moosavi-Movahedi, AA, Hosseinkhani, S, Xia, Z, Habibi-Rezaei, M, Hosseini, G, Sorenson, C and Sheibani, N (2003) The structural and functional studies of His119 and His12 in RNase a via chemical modification. Journal of Protein Chemistry 22, 643654.CrossRefGoogle ScholarPubMed
Saxon, E and Bertozzi, CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287(5460), 20072010.CrossRefGoogle ScholarPubMed
Schmaltz, RM, Hanson, SR and Wong, C-H (2011) Enzymes in the synthesis of glycoconjugates. Chemical Reviews 111(7), 42594307.CrossRefGoogle ScholarPubMed
Scinto, SL, Bilodeau, DA, Hincapie, R, Lee, W, Nguyen, SS, Xu, M, Am Ende, CW, Finn, M, Lang, K and Lin, Q (2021) Bioorthogonal chemistry. Nature Reviews Methods Primers 1(1), 30.CrossRefGoogle ScholarPubMed
Senapati, S, Manna, S, Lindsay, S and Zhang, P (2013) Application of catalyst-free click reactions in attaching affinity molecules to tips of atomic force microscopy for detection of protein biomarkers. Langmuir 29(47), 1462214630.CrossRefGoogle ScholarPubMed
Shaabani, A, Afshari, R and Hooshmand, SE (2017a) Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: A bio-nanoreactor with extremely high activity toward click-multi-component reactions. New Journal of Chemistry 41(16), 84698481.CrossRefGoogle Scholar
Shaabani, A, Maleki, A and Mofakham, H (2008) Click reaction: Highly efficient synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones. Synthetic Communications 38(21), 37513759.CrossRefGoogle Scholar
Shaabani, A, Shadi, M, Mohammadian, R, Javanbakht, S, Nazeri, MT and Bahri, F (2019) Multi-component reaction-functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water. Applied Organometallic Chemistry 33(9), e5074.CrossRefGoogle Scholar
Shaabani, S, Tavousi Tabatabaei, A and Shaabani, A (2017b) Copper (I) oxide nanoparticles supported on magnetic casein as a bio-supported and magnetically recoverable catalyst for aqueous click chemistry synthesis of 1, 4-disubstituted 1, 2, 3-triazoles. Applied Organometallic Chemistry 31(2), e3559.CrossRefGoogle Scholar
Sherman, EJ, Lorenz, DA and Garner, AL (2019) Click chemistry-mediated complementation assay for RNA–protein interactions. ACS Combinatorial Science 21(7), 522527.CrossRefGoogle ScholarPubMed
Shi, S, Wang, Z, Deng, Y, Tian, F, Wu, Q and Zheng, P (2022) Combination of click chemistry and enzymatic ligation for stable and efficient protein immobilization for single-molecule force spectroscopy. CCS Chemistry 4(2), 598604.CrossRefGoogle Scholar
Shi, X-W, Qiu, L, Nie, Z, Xiao, L, Payne, GF and Du, Y (2013) Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’chemistry. Biofabrication 5(4), 041001.CrossRefGoogle ScholarPubMed
Shibata, K, Suzawa, T, Soga, S, Mizukami, T, Yamada, K, Hanai, N and Yamasaki, M (2003) Improvement of biological activity and proteolytic stability of peptides by coupling with a cyclic peptide. Bioorganic & Medicinal Chemistry Letters 13(15), 25832586.CrossRefGoogle ScholarPubMed
Siedler, F, Quarzago, D, Rudolph-Böhner, S and Moroder, L (1994) Redox-active bis-cysteinyl peptides. II. Comparative study on the sequence-dependent tendency for disulfide loop formation. Biopolymers: Original Research on Biomolecules 34(11), 15631572.CrossRefGoogle ScholarPubMed
Siggers, T and Gordân, R (2014) Protein–DNA binding: Complexities and multi-protein codes. Nucleic Acids Research 42(4), 20992111.CrossRefGoogle ScholarPubMed
Siman, P and Brik, A (2012) Chemical and semisynthesis of posttranslationally modified proteins. Organic & Biomolecular Chemistry 10(30), 56845697.CrossRefGoogle ScholarPubMed
Skrinjar, P, Schwarz, M, Lexmüller, S, Mechtler, TP, Zeyda, M, Greber-Platzer, S, Trometer, J, Kasper, DC and Mikula, H (2018) Rapid and modular assembly of click substrates to assay enzyme activity in the newborn screening of lysosomal storage disorders. ACS Central Science 4(12), 16881696.CrossRefGoogle ScholarPubMed
Skwarczynski, M, Ah Ahmad Fuaad, A, Rustanti, L, M Ziora, Z, Aqil, M, R Batzloff, M, F Good, M and Toth, I (2011) Group a streptococcal vaccine candidates based on the conserved conformational epitope from M protein. Drug Delivery Letters 1(1), 28.Google Scholar
Sletten, EM and Bertozzi, CR (2009) Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie International Edition 48(38), 69746998.CrossRefGoogle Scholar
Speers, AE and Cravatt, BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chemistry & Biology 11(4), 535546.CrossRefGoogle ScholarPubMed
Spokoyny, AM, Zou, Y, Ling, JJ, Yu, H, Lin, Y-S and Pentelute, BL (2013) A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. Journal of the American Chemical Society 135(16), 59465949.CrossRefGoogle ScholarPubMed
Stephanopoulos, N and Francis, MB (2011) Choosing an effective protein bioconjugation strategy. Nature Chemical Biology 7(12), 876884.CrossRefGoogle ScholarPubMed
Stroh, C, Wang, H, Bash, R, Ashcroft, B, Nelson, J, Gruber, H, Lohr, D, Lindsay, S and Hinterdorfer, P (2004) Single-molecule recognition imaging microscopy. Proceedings of the National Academy of Sciences 101(34), 1250312507.CrossRefGoogle ScholarPubMed
Strzemińska, I, Fanchine, SSR, Anquetin, G, Reisberg, S, Noël, V, Pham, M and Piro, B (2016) Grafting of a peptide probe for prostate-specific antigen detection using diazonium electroreduction and click chemistry. Biosensors and Bioelectronics 81, 131137.CrossRefGoogle ScholarPubMed
Suazo, KF, Park, K-Y and Distefano, MD (2021) A not-so-ancient grease history: Click chemistry and protein lipid modifications. Chemical Reviews 121(12), 71787248.CrossRefGoogle ScholarPubMed
Takahashi, A, Suzuki, Y, Suhara, T, Omichi, K, Shimizu, A, Hasegawa, K, Kokudo, N, Ohta, S and Ito, T (2013) In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Biomacromolecules 14(10), 35813588.CrossRefGoogle ScholarPubMed
Tang, W and Becker, ML (2014) “Click” reactions: A versatile toolbox for the synthesis of peptide-conjugates. Chemical Society Reviews 43(20), 70137039.CrossRefGoogle ScholarPubMed
Tasdelen, MA and Yagci, Y (2013) Light-induced click reactions. Angewandte Chemie International Edition 52(23), 59305938.CrossRefGoogle ScholarPubMed
Tavakoli, H, Ghourchian, H, Moosavi-Movahedi, A and Saboury, A (2006) Histidine and serine roles in catalytic activity of choline oxidase from Alcaligenes species studied by chemical modifications. Process Biochemistry 41(2), 477482.CrossRefGoogle Scholar
Thirumurugan, P, Matosiuk, D and Jozwiak, K (2013) Click chemistry for drug development and diverse chemical–biology applications. Chemical Reviews 113(7), 49054979.CrossRefGoogle ScholarPubMed
Tieu, W, Da Costa, TPS, Yap, MY, Keeling, KL, Wilce, MC, Wallace, JC, Booker, GW, Polyak, SW and Abell, AD (2013) Optimising in situ click chemistry: The screening and identification of biotin protein ligase inhibitors. Chemical Science 4(9), 35333537.CrossRefGoogle Scholar
Trads, JB, Tørring, T and Gothelf, KV (2017) Site-selective conjugation of native proteins with DNA. Accounts of Chemical Research 50(6), 13671374.CrossRefGoogle ScholarPubMed
Tugyi, R, Mezö, G, Fellinger, E, Andreu, D and Hudecz, F (2005) The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide. Journal of Peptide Science 11(10), 642649.CrossRefGoogle ScholarPubMed
Turner, A, Karube, I and Wilson, GS (1987) Biosensors: Fundamentals and Applications. New York: Oxford University Press.Google Scholar
Turner, RA, Oliver, AG and Lokey, RS (2007) Click chemistry as a macrocyclization tool in the solid-phase synthesis of small cyclic peptides. Organic Letters 9(24), 50115014.CrossRefGoogle ScholarPubMed
Valverde, IE, Lecaille, F, Lalmanach, G, Aucagne, V and Delmas, AF (2012) Synthesis of a biologically active triazole-containing analogue of cystatin A through successive peptidomimetic alkyne–azide ligations. Angewandte Chemie International Edition 51(3), 718722.CrossRefGoogle ScholarPubMed
Van Berkel, SS, Van Eldijk, MB and Van Hest, JC (2011) Staudinger ligation as a method for bioconjugation. Angewandte Chemie International Edition 50(38), 88068827.CrossRefGoogle ScholarPubMed
Van Dijk, M, Van Nostrum, CF, Hennink, WE, Rijkers, DT and Liskamp, RM (2010) Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry. Biomacromolecules 11(6), 16081614.CrossRefGoogle ScholarPubMed
Villalonga, ML, Diez, P, Sanchez, A, Gamella, M, Pingarron, JM and Villalonga, R (2014) Neoglycoenzymes. Chemical Reviews 114(9), 48684917.CrossRefGoogle ScholarPubMed
Wallat, JD, Rose, KA and Pokorski, JK (2014) Proteins as substrates for controlled radical polymerization. Polymer Chemistry 5(5), 15451558.CrossRefGoogle Scholar
Walsh, CT, Garneau-Tsodikova, S and Gatto, GJ (2005) Protein posttranslational modifications: The chemistry of proteome diversifications. Angewandte Chemie International Edition 44(45), 73427372.CrossRefGoogle ScholarPubMed
Wan, Q, Chen, J, Chen, G and Danishefsky, SJ (2006) A potentially valuable advance in the synthesis of carbohydrate-based anticancer vaccines through extended cycloaddition chemistry. Journal of Organic Chemistry 71(21), 82448249.CrossRefGoogle ScholarPubMed
Wang, B, Guo, C, Zhang, M, Park, B and Xu, B (2012) High-resolution single-molecule recognition imaging of the molecular details of ricin–aptamer interaction. Journal of Physical Chemistry B 116(17), 53165322.CrossRefGoogle ScholarPubMed
Wang, H, Dalal, Y, Henikoff, S and Lindsay, S (2008) Single-epitope recognition imaging of native chromatin. Epigenetics & Chromatin 1(1), 19.CrossRefGoogle ScholarPubMed
Wang, L-X and Amin, MN (2014) Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chemistry & Biology 21(1), 5166.CrossRefGoogle ScholarPubMed
Wang, X, Huang, B, Liu, X and Zhan, P (2016) Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discovery Today 21(1), 118132.CrossRefGoogle ScholarPubMed
Wang, Z, Jinlong, L, An, Z, Kimura, M and Ono, T (2019) Enzyme immobilization in completely packaged freestanding SU-8 microfluidic channel by electro click chemistry for compact thermal biosensor. Process Biochemistry 79, 5764.CrossRefGoogle Scholar
Willnow, S, Martin, M, Lüscher, B and Weinhold, E (2012) A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem 13(8), 11671173.CrossRefGoogle ScholarPubMed
Wilson, R (2013) Sensitivity and specificity: Twin goals of proteomics assays. Can they be combined?. Expert Review of Proteomics 10(2), 135149.CrossRefGoogle ScholarPubMed
Xie, J and Seto, CT (2007) A two stage click-based library of protein tyrosine phosphatase inhibitors. Bioorganic & Medicinal Chemistry 15(1), 458473.CrossRefGoogle ScholarPubMed
Zapotoczny, S, Biedroń, R, Marcinkiewicz, J and Nowakowska, M (2012) Atomic force microscopy–based molecular studies on the recognition of immunogenic chlorinated ovalbumin by macrophage receptors. Journal of Molecular Recognition 25(2), 8288.CrossRefGoogle ScholarPubMed
Zhang, C, Spokoyny, AM, Zou, Y, Simon, MD and Pentelute, BL (2013) Enzymatic “click” ligation: Selective cysteine modification in polypeptides enabled by promiscuous glutathione S-transferase. Angewandte Chemie 125(52), 1425114255.CrossRefGoogle Scholar
Zhang, C, Yang, J, Jiang, S, Liu, Y and Yan, H (2016) DNAzyme-based logic gate-mediated DNA self-assembly. Nano Letters 16(1), 736741.CrossRefGoogle ScholarPubMed
Zhang, G, Chen, X, Chen, X, Du, K, Ding, K, He, D, Ding, D, Hu, R, Qin, A and Tang, BZ (2023) Click-reaction-mediated chemotherapy and photothermal therapy synergistically inhibit breast cancer in mice. ACS Nano 17(15), 1480014813.CrossRefGoogle ScholarPubMed
Zhao, X, Fan, P-R, Mo, C-E, Huang, Y-P and Liu, Z-S (2020) Green synthesis of monolithic enzyme microreactor based on thiol-ene click reaction for enzymatic hydrolysis of protein. Journal of Chromatography A 1611, 460618.CrossRefGoogle ScholarPubMed
Zhong, X, Yan, J, Ding, X, Su, C, Xu, Y and Yang, M (2023) Recent advances in bioorthogonal click chemistry for enhanced PET and SPECT radiochemistry. Bioconjugate Chemistry 34(3), 457476.CrossRefGoogle ScholarPubMed
Zhou, P, Zhang, X, Xin, X, Yang, J, Pan, Q, Liu, C, Liu, Y, Yu, X, Li, Z and Jiao, G (2022) Click chemistry-conjugated protein-drug micelles with anti-ferroptotic and anti-inflammatory properties promote regeneration in spinal cord injury. Chemical Engineering Journal 428, 132118s.CrossRefGoogle Scholar
Supplementary material: File

Amiri et al. supplementary material

Amiri et al. supplementary material
Download Amiri et al. supplementary material(File)
File 52.3 KB