Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-09T18:06:48.391Z Has data issue: false hasContentIssue false

VARIABILITY OF RADIOCARBON RESERVOIR AGE EFFECTS IN LAKES AND RIVERS IN ANATOLIA AND LESSER CAUCASUS

Published online by Cambridge University Press:  16 May 2024

Michel Fontugne
Affiliation:
CNRS, Aix Marseille University, Ministère de la Culture, LAMPEA, 13097 Aix-en-Provence, France Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA CNRS UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Christine Hatté*
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA CNRS UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
Nadine Tisnérat-Laborde
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA CNRS UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Vincent Ollivier
Affiliation:
CNRS, Aix Marseille University, Ministère de la Culture, LAMPEA, 13097 Aix-en-Provence, France
Catherine Kuzucuoğlu
Affiliation:
Paris 1 and Paris 12 Universities and CNRS, Laboratory of Physical Geography (UMR 8591), 2 rue Henri Dunant, 94320 Thiais, France
*
*Corresponding author. Email: christine.hatte@lsce.ipsl.fr

Abstract

Multiproxy sedimentary sequence analysis constitutes the basis for reconstructions of past paleoenvironments and climate evolution. These sequences are, for the most part, obtained by coring in lakes, maars or crater lakes whose waters can record volcanic activity or karstic contributions, especially in Eastern Anatolia and the Lesser Caucasus. The reservoir age effect in these geological contexts leads to an apparent aging of the radiocarbon ages which also affects the plants and animals developing in or near these waters and consequently the population consuming them. We present here some results obtained from modern samples taken from Mediterranean, central and eastern Anatolian lakes, from the Van and Sevan lakes and along the Kura River and its tributaries from the Lesser Caucasus. The effect of volcanic CO2 outgassing in the vicinity of maar crater lakes is also discussed.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022.

References

REFERENCES

Arnold, M, Bard, E, Maurice, P, Valladas, H, Duplessy, J-C. 1989. 14C Dating with the Gif-sur-Yvette Tandetron Accelerator: Status Report and Study of Isotopic Fractionation in the Sputter Ion Source. Radiocarbon 31(3):284291. doi: 10.1017/S0033822200011814 CrossRefGoogle Scholar
Bard, E, Arnold, M, Ostlund, HG, Maurice, P, Monfray, P, Duplessy, JC. 1988. Penetration of bomb radiocarbon in the tropical Indian Ocean measured by means of accelerator mass spectrometry. Earth and Planetary Sciences Letters 87:379389. doi: 10.1016/0012-821X(88)90002-7 CrossRefGoogle Scholar
Bligh, EG, Dyer, WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37:911917. doi: 10.1139/o59-099 CrossRefGoogle ScholarPubMed
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V, 2007. ARTEMIS, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291299. doi: 10.1017/S0033822200042211 CrossRefGoogle Scholar
Coularis, C, Tisnérat-Laborde, N, Pastor, L, Siclet, F, Fontugne, M. 2016. Temporal and spatial variations of freshwater reservoir ages in the Loire River watershed. Radiocarbon 58:549563. doi: 10.1017/RDC.2016.36 CrossRefGoogle Scholar
Deevey, ES, Stuiver, M. 1964. Distribution of natural isotopes of carbon in Linsley Pond and other New England lake. Limnol. & Oceanogr. 1: 111. doi: 10.4319/lo.1964.9.1.0001 CrossRefGoogle Scholar
Deevey, ES, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The Natural C Contents of Materials from Hard-Water Lakes. Proc. Natl. Acad. Sci. U.S.A. 40:285288. doi: 10.1073/pnas.40.5.285 CrossRefGoogle ScholarPubMed
Dufour, E, Boscherens, H, Mariotti, A. 1999. Palaeodietary implications of the isotopic variability in Eurasian Lacustrine Fish. J. Archeol. Sci., 26:617627. doi: 10.1006/jasc.1998.0379 CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59:713726. doi: 10.1017/RDC.2016.116 CrossRefGoogle Scholar
Duplessy, JC. 1972. La géochimie des isotopes stables du carbone dans la mer. Thèse Univ. Paris 6. 196 p.Google Scholar
Fontugne, M, Guichard, F, Bentaleb, I, Strechie, C, Lericolais, G. 2009. Variations in 14C reservoir ages in Black Sea watersand sedimentary organic carbon during the anoxic periods: influence of photosynthetic versus chemoautotrophic production. Radiocarbon 51:969976. doi: 10.1017/S0033822200034044 CrossRefGoogle Scholar
Gauthier, A, Mouralis, D, Kuzucuoglu, C, Fontugne, M, Evren Atakay, E, Evcimen, Ö. 2014. Changements environnementaux en Anatolie centrale depuis la fin du LGM : la séquence du maar de Çora (Erciyes). International Congress AFEQ - CNF INQUA Q9 Lyon March 2014, Book of Abstracts.Google Scholar
Hatté, C, Arnold, M, Dapoigny, A, Daux, V, Delibrias, G, Du Boisgueheneuc, D, Fontugne, M, Gauthier, C, Guillier, M-T, Jacob, J, Jaudon, M, Kaltnecker, E, Labeyrie, J, Noury, C, Paterne, M, Pierre, M, Phouybandhyt, B, Poupeau, J-J, Tannau, J-F, Thil, F, Tisnérat-Laborde, N, Valladas, H. 2023. Radiocarbon dating on ECHoMICADAS, LSCE, Gif-sur-Yvette, France: new and updated chemical procedures. Radiocarbon. doi: 10.1017/RDC.2023.46 CrossRefGoogle Scholar
Higham, T, Warren, R, Belinskij, A, Härke, H, Wood, R. 2010. Radiocarbon dating, stable isotope analysis, and diet-derived offsets in 14C ages from the Klin-Yar site, Russian North Caucasus. Radiocarbon 52(2–3):653670. doi: 10.1017/S0033822200045689 CrossRefGoogle Scholar
Hua, Q, Turnbull, JC, Santos, GM, Rakowski, AZ, Ancapichún, S, De Pol-Holz, R, Hammer, S, Lehman, SJ, Levin, I, Miller, JB, Palmer, JG, Turney, CSM. 2022. Atmospheric Radiocarbon for The Period 1950–2019. Radiocarbon 68:723745. doi: 10.1017/rdc.2021.95 CrossRefGoogle Scholar
Jones, GA, Gagnon, AR. 1994. Radiocarbon chronology of Black Sea sediments: Deep-Sea Research 41: 531557. doi: 10.1016/0967-0637(94)90094-9 CrossRefGoogle Scholar
Kempe, S, Landmann, G, Müller, G. 2002. A floating varve chronology from the Last Glacial Maximum terrace of Lake Van/Turkey. Zeitschrift für Geomorphologie, Supp. Iss., 126:97-114.Google Scholar
Kuzmin, YV, Nevesskaya, LA, Krivonogov, SK, Burr, GS. 2007. Apparent 14C ages of the ‘pre-bomb’ shells and correction values (R, ΔR) for Caspian and Aral Seas (Central Asia). Nucl. Instrum. Methods Phys. Res. Sect.B259:463-466. doi: 10.1016/j.nimb.2007.01.187 CrossRefGoogle Scholar
Kuzucuoğlu, C. 2019. Geomorphological landscapes and Pleistocene archives in the Konya Plain. In: Kuzucuoğlu C, Çiner A, Kazancı N, editors. Landscapes and landforms of Turkey. Berlin: Springerp. 353-358. doi: 10.1007/978-3-030-03515-0_17 CrossRefGoogle Scholar
Kuzucuoğlu, C, Emery-Barbier, A, Fontugne, M, Kunesh, S. 2001. The Öküzini marshes: a new Upper Pleistocene record on the Anatolian Mediterranean Coast. In: Yalçınkaya I, Otte M, Kozlowski J, Bar-Yosef O, editors. Öküzini: final Paleolithic evolution in southwest Anatolia. ERAUL 96. Liège. p. 79-82: 85-90.Google Scholar
Kuzucuoğlu, C, Pastre, J-F, Black, S, Ercan, T, Fontugne, M, Guillou, H, Hatté, C, Karabıyıkoğlu, M, Orth, P, Türkecan, A. 1998. Identification and dating of tephra layers from Quaternary sedimentary sequences of inner Anatolia. Journal of Volc. Geotherm. Research 85:153172. doi: 10.1016/S0377-0273(98)00054-7 CrossRefGoogle Scholar
Kuzucuoğlu, C, Christol, A, Mouralis, D, Doğu, AF, Akköprü, E, Fort, M, Brunstein, D, Zorer, H, Fontugne, M, Scaillet, S, Reyss, JL, Guillou, H, Karabıyıkoğlu, M. 2010. Formation of the Upper Pleistocene terraces of Lake Van (Turkey). Journal of Quaternary Science 25(7):11241137. doi: 10.1002/jqs.1431 CrossRefGoogle Scholar
Lemcke, G. 1996. Paläoklimarekonstruktion am Van See (Ostanatolien, Türkei) [PhD dissertation]. Göttingen Univ. p. 195.Google Scholar
Makaroglu, O, Çagatay, MN, Naci Orbay, N, Pesonen, LJ. 2016. The radiocarbon reservoir age of Lake Van, eastern Turkey. Quat. Int. 408:113122. doi: 10.1016/j.quaint.2015.11.008 CrossRefGoogle Scholar
Marchenko, ZV, Svyatko, SV, Grishin, AE. 2021. δ13С and δ15N isotope analysis of modern freshwater fish in the south of Western Siberia and its potential for palaeoreconstructions. Quaternary International, 598, 97109. doi: 10.1016/j.quaint.2021.06.006 CrossRefGoogle Scholar
Mangerud, J. 1972. Radiocarbon dating of marine shells, including a discussion of apparent age of recent shells from Norway. Boreas 1:143172. doi: 10.1111/j.1502-3885.1972.tb00147.x CrossRefGoogle Scholar
Moreau, C, Messager, C, Berthier, B, Hain, S, Thellier, B, Dumoulin, J-P, Caffy, I, Sieudat, M, Delqué-Količ, E, Mussard, S, Perron, M, Setti, V, Beck, L. 2020. ARTEMIS, the 14C AMS Facility of the LMC14 National Laboratory: a status report on quality control and microsample procedures. Radiocarbon, 116. doi: 10.1017/rdc.2020.73 Google Scholar
Oana, S, Deevey, ES. 1960. Carbon 13 in lake water and its possible bearing on paleolimnology. Am.J.Sci., 258-A:253272.Google Scholar
Ollivier, V, Fontugne, M, Lyonnet, B, Chataigner, C. 2016. Base level changes, river avulsions and Holocene human settlement dynamics in the Caspian Sea area (middle Kura valley, South Caucasus). Quaternary International 395, 7994. doi: 10.1016/j.quaint.2015.03.017 CrossRefGoogle Scholar
Ollivier, V, Fontugne, M, Hamon, C, Decaix, A, Hatté, C, Jalabadze, M. 2018. Neolithic water management and flooding in the Lesser Caucasus (Georgia). Quaternary Science Reviews 197:267287. doi: 10.1016/j.quascirev.2018.08.016 CrossRefGoogle Scholar
Ollivier, V, Fontugne, M, Lyonnet, B. 2015. Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology 230, 109124. doi: 10.1016/j.geomorph.2014.11.010 CrossRefGoogle Scholar
Pasquier-Cardin, Allard P, Ferreira, T, Hatté, C, Couthino, R, Fontugne, M, Jaudon, M. 1999. Magma-derived CO2 emissions recorded in 14C and 13C of plants growing in Furnas caldera, Azores. Journal of Volcanology and Geothermal Research 92, 195207. doi: 10.1016/S0377-0273(99)00076-1 CrossRefGoogle Scholar
Philippsen, B, Heinemeier, J. 2013. Freshwater reservoir effect variability in Northern Germany. Radiocarbon 55:10851101. doi: 10.1017/S0033822200048001 CrossRefGoogle Scholar
Roberts, N, Reed, JM, Leng, MJ, Kuzucuoglu, C, Fontugne, M, Bertaux, J, Woldring, JH, Bottema, S, Black, S, Hunt, SE, Karabiyikoglu, M. 2001. The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11:721736. doi: 10.1191/09596830195744 CrossRefGoogle Scholar
Shishlina, NI, van der Plicht, J, Hedges, REM, Zazovskaya, EP, Sevastyanov, VS, Chichagova, OA. 2007. The catacomb cultures of the North-West Caspian steppe: 14C chronology, reservoir effect, and paleodiet. Radiocarbon 49(2):713726. doi: 10.1017/S0033822200042600 CrossRefGoogle Scholar
Sosson, M, Rolland, Y, Muller, C, Danelian, T, Melkonyan, R, Kekelia, S, Adamia, S, Babazadeh, V, Kangarli, T, Avagyan, A, Galoyan, G, Mosar, J. 2010. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. In: Sosson M, Kaymakci N, Stephenson R, Bergerat F, Starostenko V, editors. Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society of London, Special Publication 340:329-352.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion reporting 14C data. Radiocarbon 19:355363. doi: 10.1017/S0033822200003672 CrossRefGoogle Scholar
Thil, F, Tisnérat-Laborde, N, Hatté, C, Noury, C, Paterne, M, Phouybandhyt, B, submitted. Microsample analysis with ECHoMICADAS facility: current status. Radiocarbon.Google Scholar
Tisnérat-Laborde, N, Thil, F, Synal, H.-A, Cersoy, S, Hatté, C, Gauthier, C, Massault, M, Michelot, J.-L, Noret, A, Siani, G, Tombret, O, Vigne, J.-D, Zazzo, A. 2015. ECHoMICADAS: A new compact AMS system to measuring 14C for Environment, Climate and Human Sciences, 22nd International Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015. PHYS-O.05.Google Scholar