Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T23:40:02.798Z Has data issue: false hasContentIssue false

Testing models of cerebellar ataxia via dynamic simulation

Published online by Cambridge University Press:  23 September 2014

David Grow*
Affiliation:
Department of Mechanical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA. E-mail: dgrow@nmt.edu
Amy J. Bastian
Affiliation:
John Hopkins School of Medicine, Baltimore, MD 21205, USA
Allison M. Okamura
Affiliation:
Mechanical Engineering Department, Stanford University, Stanford, CA 94305, USA
*
*Corresponding author. E-mail: dgrow@nmt.edu

Summary

Patients with damage to the cerebellum make reaching movements that are uncoordinated or “ataxic.” One prevailing hypothesis is that the cerebellum functions as an internal model for planning movements, and that damage to the cerebellum results in movements that do not properly account for arm dynamics. An exoskeleton robot was used to record multi-joint reaching movements. Subsequently, joint-torque trajectories were calculated and a gradient descent algorithm found optimal, patient-specific perturbations to actual limb dynamics predicted to reduce directional reaching errors by an average of 41%, elucidating a promising form of robotic intervention and adding support to the internal model hypothesis.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.National Institute of Neurological Disorders and Stroke. NINDS Overview. Available at: http://www.ninds.nih.gov/about_ninds/ninds_overview.htm. Last accessed: March 31, 2011.Google Scholar
2.Adams, R. D. and Victor, M., The Cerebellum. Principles of Neurology (McGraw-Hill, New York, 1993).Google Scholar
3.Ghez, C. and Thach, W. T., “The Cerebellum,” In: Principles of Neural Science (Kandel, E. R., Schwartz, J. H. and Jessell, T. M., eds.) (McGraw-Hill, 2000) pp. 832852.Google Scholar
4.Bastian, A. J., Martin, T. A., Keating, J. G. and Thach, W. T., “Cerebellar ataxia: abnormal control of interaction torques across multiple joints,” J. Neurophysiol. 76, 492509 (1996).CrossRefGoogle ScholarPubMed
5.Earhart, G. M., Fletcher, W. A., Horak, F. B., Block, E. W., Weber, K. D., Suchowersky, O. and Melvill, J. G., “Does the cerebellum play a role in podokinetic adaptation?Exp. Brain Res. 146 (4), 538542 (2002).CrossRefGoogle ScholarPubMed
6.Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. and Thach, W. T., “Throwing while looking through prisms: I. Focal olivocerebellar lesions impair adaptation,” Brain 119 1183–1198 (1996).CrossRefGoogle ScholarPubMed
7.Maschke, M., Gomez, C. M., Ebner, T. J. and Konczak, J., “Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements,” J. Neurophysiol. 91 (1), 230238 (2004).CrossRefGoogle ScholarPubMed
8.Smith, M. A. and Shadmehr, R., “Intact ability to learn internal models of arm dynamics in Huntington's disease but not cerebellar degeneration,” J. Neurophysiol. 93 (5), 28092821 (2005).CrossRefGoogle Scholar
9.Smith, E. D., Robotic Compensation of Cerebellar Ataxia Master's Thesis (Cambridge, MA: Department of Mechanical Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, September 2004).Google Scholar
10.Van der Loos, H. F. M., “VA/Stanford rehabilitation robotics research and development program: lessons learned in the application of robotics technology to the field of rehabilitation,” IEEE Trans. Rehabil. Eng. 3 (1), 4655 (1995).CrossRefGoogle Scholar
11.Schweighofer, N., Arbib, M. A. and Kawato, M., “Role of the cerebellum in reaching movements in humans: I. distributed inverse dynamics control,” Eur. J. Neurosci. 10 (1), 8694 (1998).CrossRefGoogle ScholarPubMed
12.Wolpert, D. M. and Kawato, M., “Multiple paired forward and inverse models for motor control,” Neural Netw. 11 13171329 (1998).CrossRefGoogle ScholarPubMed
13.Miall, R. C., Weir, D. J., Wolpert, D. M. and Stein, J. F., “Is the cerebellum a Smith predictor?J. Motor Behav. 25 203216 (1993).CrossRefGoogle ScholarPubMed
14.Kawato, M., “Learning Internal Models of the Motor Apparatus,” In: The Acquisition of Motor Behavior in Vertebrates (Bradford Books, Cambridge, 1996) p. 409.Google Scholar
15.Topka, H., Konczak, J., Schneider, K., Boose, A. and Dichgans, J., “Multi-joint arm movements in cerebellar ataxia: Abnormal control of movement dynamics,” Exp. Brain Res. 119 (4), 493503 (1998).CrossRefGoogle Scholar
16.Pigeon, P., Bortolami, S. B., DiZio, P. and Lackner, J. R., “Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques,” J. Neurophysiol. 89 (1), 276289 (2003).CrossRefGoogle ScholarPubMed
17.Bastian, A. J., Zackowki, K. M. and Thach, W. T., “Cerebellar ataxia: torque deficiency or torque mismatch between joints?J. Neurophysiol. 83 (5), 30193030 (2000).CrossRefGoogle ScholarPubMed
18.Massaquoi, S. and Hallett, M., “Kinematics of initiating a two-joint arm movement in patients with cerebellar ataxia,” Can. J. Neurolog. Sci. 23 (1), 314 (1996).CrossRefGoogle ScholarPubMed
19.Gomi, H. and Kawato, M., “Human arm stiffness and equilibrium-point trajectory during multi-joint movement,” Biol. Cybern. 76 (3), 163171 (1997).CrossRefGoogle ScholarPubMed
20.Scott, S. H., “Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching,” J. Neurosci. Methods 89 119127 (1999).CrossRefGoogle ScholarPubMed
21.Dolan, J. M., Friedman, M. B. and Nagurka, M. L., “Dynamic and loaded impedance components in the maintenance of human arm posture,” IEEE Trans. Syst. Man Cybern. 23 (3), 698709 (1993).CrossRefGoogle Scholar
22.Hollerbach, J., Khalil, W. and Gautier, M., Chapter 14: Model Identification,” In: Springer Handbook of Robotics (Sciliano, B. and Khatib, O., eds.) (Springer, 2008) pp. 321342.CrossRefGoogle Scholar
23.Dempster, L., Patterns of Human Motion (Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1971).Google Scholar
24.Trouillas, P., Takayanagi, T., Hallett, M., Currier, R. D., Subramony, S. H., Wessel, K., Bryer, A., Diener, H. C., Massaquoi, S., Gomez, C. M., et al., “International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome,” J. Neurolog. Sci. 145 (2), 205211 (1997).CrossRefGoogle ScholarPubMed
25.Neuromuscular Disease Center. Ataxias: General Classification. Available at: http://neuromuscular.wustl.edu/ataxia/aindex.html. Last accessed: March 31, 2011.Google Scholar
26.Grow, D., Bastian, A. J. and Okamura, A. M., “Robotic Assistance for Cerebellar Reaching,” In: Neuro-Robotics: From Brain Machine Interfaces to Rehabilitation Robotics (Artemiadis, P., ed.), vol. 2 (Springer, 2014) pp. 317343.CrossRefGoogle Scholar
27.Bhanpuri, N. H., Okamura, A. M. and Bastian, A. J., “Predicting and correcting ataxia using a model of cerebellar function,” Brain 137 19311944 (2014).CrossRefGoogle Scholar
28.Charles, S. K., Okamura, A. M. and Bastian, A. J., “Does a basic deficit in force control underlie cerebellar ataxia?J. Neurophysiol. 109 (4), 11071116 (2013).CrossRefGoogle ScholarPubMed