Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-26T17:15:16.394Z Has data issue: false hasContentIssue false

Algorithmic fairness in precision psychiatry: analysis of prediction models in individuals at clinical high risk for psychosis

Published online by Cambridge University Press:  08 November 2023

Derya Şahin*
Affiliation:
Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
Lana Kambeitz-Ilankovic
Affiliation:
Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany; and Department of Psychology, Faculty of Psychology and Educational Sciences, Ludwig-Maximilian University, Munich, Germany
Stephen Wood
Affiliation:
Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia; and Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Victoria, Australia
Dominic Dwyer
Affiliation:
Department of Psychology, Faculty of Psychology and Educational Sciences, Ludwig-Maximilian University, Munich, Germany; and Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Victoria, Australia
Rachel Upthegrove
Affiliation:
Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, UK; and Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
Raimo Salokangas
Affiliation:
Department of Psychiatry, University of Turku, Turku, Finland
Stefan Borgwardt
Affiliation:
Department of Psychiatry (University Psychiatric Clinics, UPK), University of Basel, Basel, Switzerland; and Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
Paolo Brambilla
Affiliation:
Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
Eva Meisenzahl
Affiliation:
Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
Stephan Ruhrmann
Affiliation:
Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
Frauke Schultze-Lutter
Affiliation:
Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia; and University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
Rebekka Lencer
Affiliation:
Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany; and Institute for Translational Psychiatry, University of Münster, Münster, Germany
Alessandro Bertolino
Affiliation:
Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
Christos Pantelis
Affiliation:
Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
Nikolaos Koutsouleris
Affiliation:
Department of Psychology, Faculty of Psychology and Educational Sciences, Ludwig-Maximilian University, Munich, Germany; Max-Planck Institute of Psychiatry, Munich, Germany; and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
Joseph Kambeitz
Affiliation:
Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
*
Correspondence: Derya Şahin. Email: deryasahin@protonmail.ch

Abstract

Background

Computational models offer promising potential for personalised treatment of psychiatric diseases. For their clinical deployment, fairness must be evaluated alongside accuracy. Fairness requires predictive models to not unfairly disadvantage specific demographic groups. Failure to assess model fairness prior to use risks perpetuating healthcare inequalities. Despite its importance, empirical investigation of fairness in predictive models for psychiatry remains scarce.

Aims

To evaluate fairness in prediction models for development of psychosis and functional outcome.

Method

Using data from the PRONIA study, we examined fairness in 13 published models for prediction of transition to psychosis (n = 11) and functional outcome (n = 2) in people at clinical high risk for psychosis or with recent-onset depression. Using accuracy equality, predictive parity, false-positive error rate balance and false-negative error rate balance, we evaluated relevant fairness aspects for the demographic attributes ‘gender’ and ‘educational attainment’ and compared them with the fairness of clinicians’ judgements.

Results

Our findings indicate systematic bias towards assigning less favourable outcomes to individuals with lower educational attainment in both prediction models and clinicians’ judgements, resulting in higher false-positive rates in 7 of 11 models for transition to psychosis. Interestingly, the bias patterns observed in algorithmic predictions were not significantly more pronounced than those in clinicians’ predictions.

Conclusions

Educational bias was present in algorithmic and clinicians’ predictions, assuming more favourable outcomes for individuals with higher educational level (years of education). This bias might lead to increased stigma and psychosocial burden in patients with lower educational attainment and suboptimal psychosis prevention in those with higher educational attainment.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of the Royal College of Psychiatrists

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beauchamp, TL, Childress, JF. Principles of Biomedical Ethics (7th edn). Oxford University Press, 2013.Google Scholar
Verma, S, Rubin, J. Fairness definitions explained. FairWare ‘18: Proceedings of the International Workshop on Software Fairness (Gothenburg, 29 May 2018). Association for Computing Machinery, 2018 (https://doi.org/10.1145/3194770.3194776).CrossRefGoogle Scholar
Seyyed-Kalantari, L, Zhang, H, McDermott, MBA, Chen, IY, Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med 2021; 27: 2176–82.Google Scholar
Obermeyer, Z, Powers, B, Vogeli, C, Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019; 366: 447–53.Google Scholar
Schwartz, RC, Blankenship, DM. Racial disparities in psychotic disorder diagnosis: a review of empirical literature. World J Psychiatry 2014; 4: 133–40.Google Scholar
Anglin, DM, Malaspina, D. Ethnicity effects on clinical diagnoses compared to best-estimate research diagnoses in patients with psychosis: a retrospective medical chart review. J Clin Psychiatry 2008; 69: 941–5.Google Scholar
Vos, T, Lim, SS, Abbafati, C, Abbas, KM, Abbasi, M, Abbasifard, M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1204–22.Google Scholar
Catalan, A, Richter, A, Salazar de Pablo, G, Vaquerizo-Serrano, J, Mancebo, G, Pedruzo, B, et al. Proportion and predictors of remission and recovery in first-episode psychosis: systematic review and meta-analysis. Eur Psychiatry 2021; 64: e69.Google Scholar
Oliver, D, Reilly, TJ, Baccaredda Boy, O, Petros, N, Davies, C, Borgwardt, S, et al. What causes the onset of psychosis in individuals at clinical high risk? A meta-analysis of risk and protective factors. Schizophr Bull 2020; 46: 110–20.Google Scholar
Salazar de Pablo, G, Radua, J, Pereira, J, Bonoldi, I, Arienti, V, Besana, F, et al. Probability of transition to psychosis in individuals at clinical high risk: an updated meta-analysis. JAMA Psychiatry 2021; 78: 970–8.10.1001/jamapsychiatry.2021.0830CrossRefGoogle ScholarPubMed
Beck, K, Andreou, C, Studerus, E, Heitz, U, Ittig, S, Leanza, L, et al. Clinical and functional long-term outcome of patients at clinical high risk (CHR) for psychosis without transition to psychosis: a systematic review. Schizophr Res 2019; 210: 3947.Google Scholar
Catalan, A, Salazar de Pablo, G, Aymerich, C, Damiani, S, Sordi, V, Radua, J, et al. Neurocognitive functioning in individuals at clinical high risk for psychosis: a systematic review and meta-analysis. JAMA Psychiatry 2021; 78: 859–67.Google Scholar
Addington, J, Cornblatt, BA, Cadenhead, KS, Cannon, TD, McGlashan, TH, Perkins, DO, et al. At clinical high risk for psychosis: outcome for nonconverters. Am J Psychiatry 2011; 168: 800–5.Google Scholar
Salazar de Pablo, G, Besana, F, Arienti, V, Catalan, A, Vaquerizo-Serrano, J, Cabras, A, et al. Longitudinal outcome of attenuated positive symptoms, negative symptoms, functioning and remission in people at clinical high risk for psychosis: a meta-analysis. EClinicalMedicine 2021; 36: 100909.Google Scholar
Sanfelici, R, Dwyer, DB, Antonucci, LA, Koutsouleris, N. Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: a meta-analytic view on the state of the Art. Biol Psychiatry 2020; 88: 349–60.Google Scholar
Kambeitz-Ilankovic, L, Vinogradov, S, Wenzel, J, Fisher, M, Haas, SS, Betz, L, et al. Multivariate pattern analysis of brain structure predicts functional outcome after auditory-based cognitive training interventions. NPJ Schizophr 2021; 7: 40.Google Scholar
Koutsouleris, N, Kambeitz-Ilankovic, L, Ruhrmann, S, Rosen, M, Ruef, A, Dwyer, DB, et al. Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis. JAMA Psychiatry 2018; 75: 1156–72.Google Scholar
Rosen, M, Betz, LT, Schultze-Lutter, F, Chisholm, K, Haidl, TK, Kambeitz-Ilankovic, L, et al. Towards clinical application of prediction models for transition to psychosis: a systematic review and external validation study in the PRONIA sample. Neurosci Biobehav Rev 2021; 125: 478–92.10.1016/j.neubiorev.2021.02.032CrossRefGoogle ScholarPubMed
Koutsouleris, N, Worthington, M, Dwyer, DB, Kambeitz-Ilankovic, L, Sanfelici, R, Fusar-Poli, P, et al. Toward generalizable and transdiagnostic tools for psychosis prediction: an independent validation and improvement of the NAPLS-2 risk calculator in the multisite PRONIA cohort. Biol Psychiatry 2021; 90: 632–42.Google Scholar
Gille, F, Jobin, A, Ienca, M. What we talk about when we talk about trust: theory of trust for AI in healthcare. Intell Based Med 2020; 1–2: 100001.Google Scholar
Jacobson, NC, Bentley, KH, Walton, A, Wang, SB, Fortgang, RG, Millner, AJ, et al. Ethical dilemmas posed by mobile health and machine learning in psychiatry research. Bull World Health Organ 2020; 98: 270–6.10.2471/BLT.19.237107CrossRefGoogle ScholarPubMed
Starke, G, Schmidt, B, De Clercq, E, Elger, BS. Explainability as fig leaf? An exploration of experts’ ethical expectations towards machine learning in psychiatry. AI Ethics 2023; 3: 303–14.Google Scholar
Xu, J, Xiao, Y, Wang, WH, Ning, Y, Shenkman, EA, Bian, J, et al. Algorithmic fairness in computational medicine. EBioMedicine 2022; 84: 104250.Google Scholar
Koutsouleris, N, Dwyer, DB, Degenhardt, F, Maj, C, Urquijo-Castro, MF, Sanfelici, R, et al. Multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression. JAMA Psychiatry 2021; 78: 195209.Google Scholar
Cannon, TD, Yu, C, Addington, J, Bearden, CE, Cadenhead, KS, Cornblatt, BA, et al. An individualized risk calculator for research in prodromal psychosis. Am J Psychiatry 2016; 173: 980–8.Google Scholar
Cornblatt, BA, Auther, AM, Niendam, T, Smith, CW, Zinberg, J, Bearden, CE, et al. Preliminary findings for two new measures of social and role functioning in the prodromal phase of schizophrenia. Schizophr Bull 2007; 33: 688702.10.1093/schbul/sbm029CrossRefGoogle ScholarPubMed
Carrión, RE, McLaughlin, D, Goldberg, TE, Auther, AM, Olsen, RH, Olvet, DM, et al. Prediction of functional outcome in individuals at clinical high risk for psychosis. JAMA Psychiatry 2013; 70: 1133–42.10.1001/jamapsychiatry.2013.1909CrossRefGoogle ScholarPubMed
Bobko, P, Roth, PL. The four-fifths rule for assessing adverse impact: an arithmetic, intuitive, and logical analysis of the rule and implications for future research and practice. In Research in Personnel and Human Resources Management (vol 23) (ed Martocchio, JJ): 177–98. Emerald Group Publishing Limited, 2004.Google Scholar
Ojala, M, Garriga, GC. Permutation tests for studying classifier performance. J Mach Learn Res 2010; 11: 1833–63.Google Scholar
Chapman, EN, Kaatz, A, Carnes, M. Physicians and implicit bias: how doctors may unwittingly perpetuate health care disparities. J Gen Intern Med 2013; 28: 1504–10.Google Scholar
Adeponle, AB, Groleau, D, Kirmayer, LJ. Clinician reasoning in the use of cultural formulation to resolve uncertainty in the diagnosis of psychosis. Cult Med Psychiatry 2015; 39: 1642.Google Scholar
Barr, SM, Roberts, D, Thakkar, KN. Psychosis in transgender and gender non-conforming individuals: a review of the literature and a call for more research. Psychiatry Res 2021; 306: 114272.Google Scholar
Dickson, H, Hedges, EP, Ma, SY, Cullen, AE, MacCabe, JH, Kempton, MJ, et al. Academic achievement and schizophrenia: a systematic meta-analysis. Psychol Med 2020; 50: 1949–65.Google Scholar
Guo, LN, Lee, MS, Kassamali, B, Mita, C, Nambudiri, VE. Bias in, bias out: underreporting and underrepresentation of diverse skin types in machine learning research for skin cancer detection – a scoping review. J Am Acad Dermatol 2022; 87: 157–9.Google Scholar
Abbasi-Sureshjani, S, Raumanns, R, Michels, BEJ, Schouten, G, Cheplygina, V. Risk of training diagnostic algorithms on data with demographic bias. In Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, iMIMIC 2020, Second International Workshop, MIL3ID 2020, and 5th International Workshop, LABELS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings (eds Cardoso, J, Van Nguyen, H, Heller, N, Abreu, PH, Isgum, I, Silva, W, et al.): 183–92. Springer International Publishing, 2020.Google Scholar
Stormacq, C, Van den Broucke, S, Wosinski, J. Does health literacy mediate the relationship between socioeconomic status and health disparities? Integrative review. Health Promot Int 2019; 34: e117.Google Scholar
Kunst, AE, Bos, V, Lahelma, E, Bartley, M, Lissau, I, Regidor, E, et al. Trends in socioeconomic inequalities in self-assessed health in 10 European countries. Int J Epidemiol 2005; 34: 295305.Google Scholar
Erickson, J, El-Gabalawy, R, Palitsky, D, Patten, S, Mackenzie, CS, Stein, MB, et al. Educational attainment as a protective factor for psychiatric disorders: findings from a nationally representative longitudinal study. Depress Anxiety 2016; 33: 1013–22.Google Scholar
Supplementary material: File

Şahin et al. supplementary material

Şahin et al. supplementary material
Download Şahin et al. supplementary material(File)
File 19 KB
Submit a response

eLetters

No eLetters have been published for this article.