Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-10T07:20:52.302Z Has data issue: false hasContentIssue false

All-triploid offspring in the yellowtail tetra Astyanax altiparanae Garutti & Britski 2000 (Teleostei, Characidae) derived from female tetraploid × male diploid crosses

Published online by Cambridge University Press:  09 January 2023

Andreoli Correia Alves*
Affiliation:
Federal Rural University of Rio de Janeiro (UFRRJ). Animal Science Graduate Programme, Km 7, Zona Rural, BR-465, s/n, Seropédica RJ Laboratory of Fish Biotechnology, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental CEPTA/ICMbio, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil
George Shigueki Yasui
Affiliation:
Laboratory of Fish Biotechnology, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental CEPTA/ICMbio, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil University of São Paulo, School of Veterinary Medicine and Animal Science, Department of Animal Reproduction, São Paulo, Brazil
Nivaldo Ferreira do Nascimento
Affiliation:
Laboratory of Fish Biotechnology, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental CEPTA/ICMbio, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil Federal Rural University of Pernambuco (UFRPE), Unidade Acadêmica de Serra Talhada, Serra Talhada, Av. Gregório Ferraz Nogueira, s/n, Serra Talhada PE
Paulo Sérgio Monzani
Affiliation:
Laboratory of Fish Biotechnology, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental CEPTA/ICMbio, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil Paulista State University (UNESP), Department of Zoology, Botucatu, SP, Brazil
José Augusto Senhorini
Affiliation:
Laboratory of Fish Biotechnology, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental CEPTA/ICMbio, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil Paulista State University (UNESP), Department of Zoology, Botucatu, SP, Brazil
Matheus Pereira dos Santos
Affiliation:
Federal Rural University of Rio de Janeiro (UFRRJ). Animal Science Graduate Programme, Km 7, Zona Rural, BR-465, s/n, Seropédica RJ
*
Author for correspondence: Andreoli Correia Alves. Federal Rural University of Rio de Janeiro (UFRRJ). Animal Science Graduate Programme, Km 7, Zona Rural, BR-465, s/n, Seropédica RJ, Brazil. E-mail: andreoliaca@gmail.com

Summary

This study aimed to evaluate the ploidy and survival of larvae resulting from crosses between tetraploid females and diploid males of yellowtail tetra Astyanax altiparanae, both females (three diploids and three tetraploids) and males (n = 3 diploids). Breeders were subjected to hormonal induction with pituitary gland extract from common carp fish (Cyprinus carpio). Females received two doses at concentrations of 0.3 and 3.0 mg/kg −1 body weight and at intervals of 6 h. Males were induced with a single dose of 3.0 mg/kg −1 applied simultaneously with the second dose in females. Oocytes from each diploid and tetraploid female were fertilized with semen from the same male, resulting in two crosses: cross 1 (diploid male and diploid female) and cross 2 (diploid male and tetraploid female). The procedures were performed with separate females (diploid and tetraploid) and diploid males for each repetition (n = 3). For ploidy determination, 60 larvae from each treatment were analyzed using flow cytometry and cytogenetic analyses. As expected, flow cytometry analysis showed that progenies from crosses 1 and 2 presented diploid and triploid individuals, respectively, with a 100% success rate. The same results were confirmed in the cytogenetic analysis, in which the larvae resulting from cross 1 had 50 metaphase chromosomes and those from cross 2 had 75 chromosomes. The oocytes have a slightly ovoid shape at the time of extrusion. Diploid oocytes had a size of 559 ± 20.62 μm and tetraploid of 1025.33 ± 30.91 μm. Statistical differences were observed between eggs from crosses 1 and 2 (P = 0.0130). No significant differences between treatments were observed for survival at the 2-cell stage (P = 0.6174), blastula (P = 0.9717), gastrula (P = 0.5301), somite (P = 0.3811), and hatching (P = 0.0984) stages. In conclusion, our results showed that tetraploid females of the yellowtail tetra A. altiparanae are fertile, present viable gametes after stripping and fertilization using the ‘dry method’, and may be used for mass production of triploids. This is the first report of these procedures within neotropical characins, and which can be applied in other related species of economic importance.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamov, N. SdM., Nascimento, N. Fd, Maciel, E. C. S., Pereira-Santos, M., Senhorini, J. A., Calado, L. L., Evangelista, M. M., Nakaghi, L. S. O., Guerrero, A. H. M., Fujimoto, T. and Yasui, G. S. (2017). Triploid induction in the yellowtail tetra, Astyanax altiparanae, using temperature shock: tools for conservation and aquaculture. Journal of the World Aquaculture Society, 48(5), 741750. doi: 10.1111/jwas.12390 CrossRefGoogle Scholar
Allen, S. K. (1983). Flow cytometry: Assaying experimental polyploid fish and shellfish. Aquaculture, 33(1–4), 317328. doi: 10.1016/0044-8486(83)90412-X.CrossRefGoogle Scholar
Arai, K. (2001). Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture, 197(1–4), 205228. doi: 10.1016/S0044-8486(01)00588-9 CrossRefGoogle Scholar
Arai, K. and Fujimoto, T. (2018). Chromosome manipulation techniques and applications to aquaculture. Sex Control in Aquaculture, 1, 137162.CrossRefGoogle Scholar
Benfey, T. J. (2016). Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study. Reviews in Aquaculture, 8(3), 264282. doi: 10.1111/raq.12092 CrossRefGoogle Scholar
Blanc, J., Chourrout, D. and Krieg, F. (1987). Evaluation of juvenile rainbow trout survival and growth in half-sib families from diploid and tetraploid sires. Aquaculture, 65(3–4), 215220. doi: 10.1016/0044-8486(87)90233-X CrossRefGoogle Scholar
Blanc, J. M., Poisson, H., Escaffre, A. M., Aguirre, P. and Vallée, F. (1993). Inheritance of fertilizing ability in male tetraploid rainbow trout (Oncorhynchus mykiss). Aquaculture, 110(1), 6170. doi: 10.1016/0044-8486(93)90434-Z CrossRefGoogle Scholar
Borin, L. A., Martins-Santos, I. C. and Oliveira, C. (2002). A Natural triploid in Trichomycterus davisi (Siluriformes, Trichomycteridae): mitotic and meiotic characterization by chromosome banding and synaptonemal complex analyses. Genetica, 115(3), 253258. doi: 10.1023/a:1020667526552 CrossRefGoogle ScholarPubMed
Chourrout, D. (1984). Pressure-induced retention of second polar body and suppression of first cleavage in rainbow trout: production of all-triploids, all-tetraploids, and heterozygous and homozygous diploid gynogenetics. Aquaculture, 36(1–2), 111126. doi: 10.1016/0044-8486(84)90058-9.CrossRefGoogle Scholar
Chourrout, D., Chevassus, B., Krieg, F., Happe, A., Burger, G. and Renard, P. (1986). Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females—potential of tetraploid fish. TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik, 72(2), 193206. doi: 10.1007/BF00266992 CrossRefGoogle ScholarPubMed
do Nascimento, N. F., De Siqueira-Silva, D., Pereira-Santos, M., Fujimoto, T., Senhorini, J. A., Yasui, G. and S. (2017a). Stereological analysis of gonads from diploid and triploid fish yellowtail tetra Astyanax altiparanae (Garuti & Britski) in laboratory conditions. Zygote, 24(4), 537544.CrossRefGoogle Scholar
do Nascimento, N. F., Pereira-Santos, M., Piva, L. H., Manzini, B., Fujimoto, T., Senhorini, J. A., Yasui, G. S. and Nakaghi, L. S. O. (2017b). Growth, fatty acid composition, and reproductive parameters of diploid and triploid yellowtail tetra Astyanax altiparanae . Aquaculture, 471, 163171. doi: 10.1016/j.aquaculture.2017.01.007 CrossRefGoogle Scholar
do Nascimento, N. F., Lázaro, T. M., de Alcântara, N. R., Rocha, J. A. S., Dos Santos, S. C. A., Nakaghi, L. S. O. and Yasui, G. S. (2018). In vivo storage of oocytes leads to lower survival, increased abnormalities and may affect the ploidy status in the yellowtail tetra Astyanax altiparanae . Zygote, 26(6), 471475. doi: 10.1017/S0967199418000527 CrossRefGoogle ScholarPubMed
do Nascimento, N. F., Pereira-Santos, M., Levy-Pereira, N., Monzani, P. S., Niedzielski, D., Fujimoto, T., Senhorini, J. A., Nakaghi, L. S. O. and Yasui, G. S. (2020). High percentages of larval tetraploids in the yellowtail tetra Astyanax altiparanae induced by heat-shock: the first case in neotropical characins. Aquaculture, 520, 734938. doi: 10.1016/j.aquaculture.2020.734938 CrossRefGoogle Scholar
do Nascimento, N. F., Bertolini, R. M., Lopez, L. S., Nakaghi, L. S. O., Monzani, P. S., Senhorini, J. A., Vianna, R. C. and Yasui, G. S. (2021). Heat-induced triploids in Brycon amazonicus: A strategic fish species for aquaculture and conservation. Zygote, 29(5), 372376. doi: 10.1017/S0967199421000125 CrossRefGoogle ScholarPubMed
dos Santos, M. P., Yasui, G. S., Xavier, P. L., de Macedo Adamov, N. S., do Nascimento, N. F., Fujimoto, T., Senhorini, J. A. and Nakaghi, L. S. (2016). Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae). Zygote, 24(6), 795807. doi: 10.1017/S0967199416000101 CrossRefGoogle ScholarPubMed
dos Santos, M. P., Do Nascimento, N. F., Yasui, G. S., Pereira, N. L., Fujimoto, T., Senhorini, J. A. and Nakaghi, L. S. O. (2018). Short-term storage of the oocytes affects the ploidy status in the yellowtail tetra Astyanax altiparanae . Zygote, 26(1), 8998. doi: 10.1017/S0967199417000739 CrossRefGoogle ScholarPubMed
Dunham, R. (2004). Aquaculture and Fisheries Biotechnology: Genetic Approaches. CABI. ISBN 0-85199-596-9.CrossRefGoogle Scholar
Foresti, F., Oliveira, C. and Foresti de Almeida-Toledo, L. (1993). A method for chromosome preparations from large fish specimens using in vitro short-term treatment with colchicine. Experientia, 49(9), 810813. doi: 10.1007/BF01923555 CrossRefGoogle Scholar
Garcia, S., Amaral Júnior, H., Yasuy, G. S., Liebl, F., Souto, L. I. M., Zaniboni-Filho, E. (2018). Tetraploidia em Rhamdia quelen (Quoy e Gaimard, 1824) por Choque térmico duplo (quente e frio). Zaniboni-FILHO, E. Boletim do Instituto de Pesca, 43, 257265.CrossRefGoogle Scholar
Hershberger, W. K. and Hostuttler, M. A. (2005). Variation in time to first cleavage in rainbow trout Oncorhynchus mykiss embryos: A major factor in induction of tetraploids. Journal of the World Aquaculture Society, 36(1), 96102. doi: 10.1111/j.1749-7345.2005.tb00135.x CrossRefGoogle Scholar
Hershberger, W. K. and Hostuttler, M. A. (2007). Protocols for more effective induction of tetraploid rainbow trout. North American Journal of Aquaculture, 69(4), 367372. doi: 10.1577/A06-022.1 CrossRefGoogle Scholar
Kizak, V., Guner, Y., Turel, M. and Kayim, M. (2013). Comparison of growth performance, gonadal structure and erythrocyte size in triploid and diploid brown trout (Salmo trutta fario L., 1758). Turkish Journal of Fisheries and Aquatic Sciences, 13, 571580.CrossRefGoogle Scholar
Maistro, E. L., Lúcia Dias, A., Foresti, F., Oliveira, C. and Filho, O. M. (1994). Natural triploidy in Astyanax scabripinnis (Pisces, Characidae) and simultaneous occurrence of macro B-chromosomes. Caryologia, 47(3–4), 233239. doi: 10.1080/00087114.1994.10797301 CrossRefGoogle Scholar
Myers, J. M. (1986). Tetraploid induction in Oreochromis spp. Aquaculture, 57(1–4), 281287. doi: 10.1016/0044-8486(86)90206-1 CrossRefGoogle Scholar
Nam, Y. K. and Kim, D. S. (2004). Ploidy status of progeny from the crosses between tetraploid males and diploid females in mud loach (Misgurnus mizolepis). Aquaculture, 236(1–4), 575582. doi: 10.1016/j.aquaculture.2003.12.026 CrossRefGoogle Scholar
Piferrer, F., Beaumont, A., Falguière, J., Flajšhans, M., Haffray, P. and Colombo, L. (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture, 293(3–4), 125156. doi: 10.1016/j.aquaculture.2009.04.036 CrossRefGoogle Scholar
Piva, L. H., de Siqueira-Silva, D. H., Goes, C. A. G., Fujimoto, T., Saito, T., Dragone, L. V., Senhorini, J. A., Porto-Foresti, F., Ferraz, J. B. S. and Yasui, G. S. (2018). Triploid or hybrid tetra: Which is the ideal sterile host for surrogate technology? Theriogenology, 108, 239244. doi: 10.1016/j.theriogenology.2017.12.013.CrossRefGoogle ScholarPubMed
Tabata, Y. A., Rigolino, M. G. and Tsukamoto, R. Y. (1999). Production of all female rainbow trout, Oncorhynchus mykiss (Pisces, Salmonidae). III. Growth up to first sexual maturation. Boletim do Instituto de Pesca, 4, 101102.Google Scholar
Taranger, G. L., Carrillo, M., Schulz, R. W., Fontaine, P., Zanuy, S., Felip, A., Weltzien, F. A., Dufour, S., Karlsen, O., Norberg, B., Andersson, E. and Hansen, T. (2010). Control of puberty in farmed fish. General and Comparative Endocrinology, 165(3), 483515. doi: 10.1016/j.ygcen.2009.05.004 CrossRefGoogle ScholarPubMed
Turner, N., Else, P. L. and Hulbert, A. J. (2003). Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: Implications for disease states and metabolism. Naturwissenschaften, 90(11), 521523. doi: 10.1007/s00114-003-0470-z CrossRefGoogle ScholarPubMed
Weber, G. M., Hostuttler, M. A., Cleveland, B. M. and Leeds, T. D. (2014). Growth performance comparison of intercross-triploid, induced triploid, and diploid rainbow trout. Aquaculture, 433, 8593. doi: 10.1016/j.aquaculture.2014.06.003 CrossRefGoogle Scholar
Xavier, P. L. P., Senhorini, J. A., Pereira-Santos, M., Fujimoto, T., Shimoda, E., Silva, L. A., Dos Santos, S. A. and Yasui, G. S. (2017). A flow cytometry protocol to estimate DNA content in the yellowtail tetra Astyanax altiparanae . Frontiers in Genetics, 8, 131. doi: 10.3389/fgene.2017.00131 CrossRefGoogle ScholarPubMed
Yasui, G. S., Senhorini, J. A., Shimoda, E., Pereira-Santos, M., Nakaghi, L. S., Fujimoto, T., Arias-Rodriguez, L. and Silva, L. A. (2015). Improvement of gamete quality and its short-term storage: an approach for biotechnology in laboratory fish. Animal, 9(3), 464470. doi: 10.1017/S1751731114002511 CrossRefGoogle ScholarPubMed
Yoshikawa, H., Morishima, K., Fujimoto, T., Yamaha, E. and Arai, K. (2007). Simultaneous formation of haploid, diploid and triploid eggs in diploid–triploid mosaic loaches. Journal of Fish Biology, 71(Suppl. B), 250263. doi: 10.1111/j.1095-8649.2007.01608.x CrossRefGoogle Scholar
Zhang, Q. and Arai, K. (1999). Distribution and reproductive capacity of natural triploid individuals and occurrence of unreduced eggs as a cause of polyploidization in the loach, Misgurnus anguillicaudatus . Ichthyological Research, 46(2), 153161. doi: 10.1007/BF02675433 CrossRefGoogle Scholar