Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T15:01:07.627Z Has data issue: false hasContentIssue false

Deblending overlapping galaxies in DECaLS using transformer-based algorithm: A method combining multiple bands and data types

Published online by Cambridge University Press:  19 March 2024

Ran Zhang
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Meng Liu*
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Zhenping Yi
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Hao Yuan
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Zechao Yang
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Yude Bu
Affiliation:
School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China
Xiaoming Kong
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Chenglin Jia
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Yuchen Bi
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Yusheng Zhang
Affiliation:
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
Nan Li
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
*
Corresponding author: Meng Liu; Email: liumeng@sdu.edu.cn

Abstract

In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modelling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighbouring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within $\pm$0.025 to $\pm$0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we have demonstrated effective deblending of 63 733 blended galaxy images, randomly chosen from the DECaLS database.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, P. A., et al. 2009, arXiv preprint arXiv:0912.0201, https://doi.org/10.48550/arXiv.0912.0201.Google Scholar
Arcelin, B., Doux, C., Aubourg, E., Roucelle, C., & LSST Dark Energy Science Collaboration). 2021, MNRAS, 500, 531Google Scholar
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393CrossRefGoogle Scholar
Boucaud, A., et al. 2020, MNRAS, 491, 2481Google Scholar
Bradley, L., et al. 2016, Astro- physics Source Code Library, ascl–1609 Google Scholar
Chen, Z., et al. 2022, Advances in Neural Information Processing Systems Vol. 35, 25478. https://proceedings.neurips.cc/paper_files/paper/2022/file/a37fea8e67f907311826bc1ba2654d97-Paper-Conference.pdf Google Scholar
Dey, A., et al. 2019, AJ, 157, 168Google Scholar
Dosovitskiy, A., et al. 2020, arXiv preprint arXiv:2010.11929, https://doi.org/10.48550/arXiv.2010.11929 CrossRefGoogle Scholar
Drlica-Wagner, A., et al. 2018, ApJS, 235, 33Google Scholar
Feder, R. M., Portillo, S. K. N., Daylan, T., & Finkbeiner, D. 2020, AJ, 159, 163 CrossRefGoogle Scholar
Hogg, D. W., & Lang, D. 2013, PASP, 125, 719Google Scholar
Huang, S., et al. 2018, PASJ, 70, S6Google Scholar
Jarvis, M., et al. 2016, MNRAS, 460, 2245Google Scholar
Keel, W. C., Manning, A. M., Holwerda, B. W., Mezzoprete, M., Lintott, C. J., Schawinski, K., Gay, P., & Masters, K. L. 2013, PASP, 125, 2CrossRefGoogle Scholar
Krogh, A., & Hertz, J. 1991, Advances in Neural Information Processing Systems 4. https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf Google Scholar
Lai, W.-S., Huang, J.-B., Ahuja, N., & Yang, M.-H. 2018, IEEE TPAMI, 41, 2599CrossRefGoogle Scholar
Larsson, G., Maire, M., & Shakhnarovich, G. 2017, arXiv: 1605.07648 [cs.CV]. https://doi.org/10.48550/arXiv.1605.07648.Google Scholar
Lee, D. D., & Sebastian Seung, H. 1999, Natur, 401, 788Google Scholar
Li, J., Tu, L., Gao, X., Li, X., Zhong, Z., & Feng, X. 2022, MNRAS, 517, 808CrossRefGoogle Scholar
Linde, P. 1989, HA, 8, 651CrossRefGoogle Scholar
Lupton, R., Blanton, M. R., Fekete, G., Hogg, D. W., O’Mullane, W., Szalay, A., & Wherry, N. 2004, PASP, 116, 133Google Scholar
Melchior, P., Joseph, R., Sanchez, J., MacCrann, N., & Gruen, D. 2021, NatRvPh, 3, 712CrossRefGoogle Scholar
Melchior, P., Moolekamp, F., Jerdee, M., Armstrong, R., Sun, A.-L., Bosch, J., & Lupton, R. 2018, A&C, 24, 129CrossRefGoogle Scholar
Paatero, P., & Tapper, U. 1994, Environmetrics, 5, 111Google Scholar
Reiman, D. M., & Göhre, B. E. 2019, MNRAS, 485, 2617CrossRefGoogle Scholar
Ronneberger, O., Fischer, P., & Brox, T. 2015, in Medical Image Computing and Computer-Assisted Intervention–Miccai 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (Springer), 234. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28.Google Scholar
Samuroff, S., et al. 2018, MNRAS, 475, 4524Google Scholar
Sérsic, J. L. 1963, BAAA, 6, 41 Google Scholar
Spergel, D. N. 2010, ApJS, 191, 58CrossRefGoogle Scholar
Stetson, P. B. 1987, PASP, 99, 191 CrossRefGoogle Scholar
Stoughton, C., et al. 2002, AJ, 123, 485CrossRefGoogle Scholar
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. 2017, Advances in Neural Information Processing Systems 30. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf Google Scholar
Walmsley, M., et al. 2022, MNRAS, 509, 3966Google Scholar
Wang, H., Sreejith, S., Slosar, A., Lin, Y., & Yoo, S. 2022, PhRvD, 106, 063023Google Scholar
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. 2004, IEEE TIP, 13, 600Google Scholar