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SYMPLECTIC STRUCTURES AND SYMMETRIES
OF SOLUTIONS OF

THE COMPLEX MONGE-AMPERE EQUATION

STANLEY M. EINSTEIN-MATTHEWS1

Abstract. The graphs that arise from the gradients of solutions u of the
homogeneous complex Monge-Ampere equation are characterized in terms of
the natural symplectic structure on the cotangent bundle. This characteri-
zation is invariant under symplectic biholomorphisms. Using the symplectic
structures we construct symmetries (to be called Lempert transformations) for
real valued functions u which are absolutely continuous on lines. We then use
these symmetries to generate interesting solutions to the homogeneous com-
plex Monge-Ampere equation and to transform the Poincare-Lelong equation
and the ^-equation. An example of Lempert transform is given and the main
theorem is applied to prove regularity results for exterior nonlinear Dirichlet
problem for the homogeneous complex Monge-Ampere equation.

§1. Introduction and Notation

The homogeneous complex Monge-Ampere equation, (in short HC-

MAE), takes the form

[
ΊΓΊ*=-U\ = 0

dzjdzk J

in local coordinates on a complex manifold. It is well-known that this

equation is invariant under biholomorphic changes of variables and hence

makes sense globally on a complex manifold. The equation takes globally

the form
71 / rfi \

(1.2) (ddu)n = 0, where ddu = V ( ^_ j dzj Λ dzk,

j)k=ι\
dzJdzk J

and the power is exterior power. In (1.1) and (1.2) u is a real-valued func-

tion defined on a complex manifold X of complex dimension n. If u is
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64 S. M. EINSTEIN-MATTHEWS

a plurisubharmonic function, then ddcu = 2iddu is a nonnegative (1,1)-
current, and by a theorem of Lelong [Le.l], the coefficients Q^.QJ are Borel
measures for, 1 < j , k < n.

Symplectic structures are intimately connected with HCMAE. Lempert
[Lem.2] and Semmes [Se.l] have used these structures to formulate precise
transformations of solutions of HCMAE. Recall that a symplectic structure
on an even-dimensional smooth manifold M2n is a closed nonsingular exte-
rior differential 2-form ω, where, nonsingular means the nonvanishing of the
top exterior power of ω, ωn φ 0, on M [see An.l, We.l]. Let T*X denote
the holomorphic (l,0)-cotangent bundle and Tίχ:T*X —• X the natural
projection. On Γ*X we have 1-forms and 2-forms

(1.3) ax — 2_^ ζj dzj, ωx = da = \ , dξj A dzj,

3 3

where ζj are the holomorphic fibre coordinates relative to the holomorphic
coordinate system (^i,..., zn) on a coordinate patch Ω c l . Let η = 3?αχ,
σ = 9αχ, μ = 3?ωχ, v — ̂ $ωχ. These correspond to canonical real forms
of real symplectic geometry. It is well-known, (see [Se.l]), that the image
of du in T*X which we write as

(1.4) M = {ξj - dju = 0}

where dj = ^- , 1 < j < n, are the distributional partial derivatives, is
a maximal submanifold on which μ = $lωχ vanishes. Such a submanifold
is called a real Lagrangian or z/-Lagrangian. If Φ:T*X —> T*X is a local
holomorphic symplectic map i.e. Φ*u;χ = α;χ, then it is also real symplectic,
so M^ = Φ(M) is real Lagrangian. Assume that Mb is transverse to the
fibres of the projection map Πχ Mb is then a graph of a (1, 0)-form whose
real part is d-closed by the real Lagrangian condition, and so locally is equal
to du^ where ΐzb, the real-valued function determined up to a constant, is
the symplectic transform of u.

In [Lem.2], Lempert used a global version of the above procedure to con-
struct interesting solutions to the HCMAE. It turned out that the graphs of
du that arise from solutions of HCMAE can be characterized in terms of the
natural holomorphic symplectic structure on the complex cotangent bundle.
In particular, this characterization is invariant under symplectic biholomor-
phisms. Let us make this precise. Let p denote the section of T*X defined
by du. Then du = p*ax and ddu = ddu = p*ωx = p*Ψ*(cjχ[~Mb) =
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(Tlχ oφopyφdu^) where ωx[Mb is the restriction of ωx to Mb. Thus the
null vectors of ddu correspond to those of ddυ? under Iίχ o φ o p . If the
Levi form is non-degenerate, there are no further invariants.

To formulate his results, consider a pair of complex manifolds (X, Y)
of equal complex dimensions, dime X — dime Y = n. Let (Γ*X, T*Y)
be their respective holomorphic cotangent bundles, (aχ,aγ) and (ωχ,ωγ)
their canonical Liouville 1-forms, respectively symplectic forms. Trans-
form u G Cι(X, R), (where Cfc denotes the class of fc-times continuously
differentiable functions for, 1 < k < oo) with the help of the symplectic bi-
holomorphic mapping Φ: T*X —* T*F. First observe that d(Φ*αy — α^) =
Φ*cjy— ωx = 0, so that Φ*αy—αx is ad-closed (l,0)-form on T*X. Locally
there is a holomorphic function h: T*X —> C with oί/i = Φ*αy — ax. Assume
h:T*X —> C exists globally then for u G C1(X, R) the gradient mapping
gu:X —> Γ*X is a continuous section given locally by gu(x) := (9u)x G
Γ X, for x G X i.e., ^ ( r) = (zu...,zn;fe(x),...,-jfa(x)) G ΓX*X in a
coordinate patch. If now IIχ: T*X —> X and Πy: Γ*F —> F are the natural
projections, define the continuous mapping Φ: X —> Y by

(1.5) Φ : = Π y o φ o j u .

which we assume throughout to be invertible. Fix y G 7 , set x := Φ~1(y)
and define u' G C(Y,R) by

(1.6) u{y) := w(ar) + 25?/z(^(x)).

Lempert proved the following

THEOREM 1.1. ([Lem.2]) Let u G C2(X,R). ΓΛen 9 ^ = Φ*aθiχ;.
In particular, if u satisfies HCMAE, i.e. (ddu)n = 0, ί/ien (ddu1)71 = 0.
Furthermore, if the symplectic biholomorphic mapping Φ satisfies Φ*αy =
o χ , i.e. h = 0 ; ί/ierz 9t6 = Φ*duf.

In this paper, we extend the above theorem to the larger class of abso-
lutely continuous real-valued functions on lines (in short, ACL) defined on a
complex manifold X of complex dimension n denoted by ACL(X, R) (for the
definition of ACL and its key properties, which we borrow from the theory
of quasiconformal mappings, see [Ri.l]). For u G ACL(X,M), the gradient
mapping gu:X —> T*X which is a measurable section is given by gu(x) :=
{du)x e T*X for a.e x € X i.e. gu(x) := ( ^ . . . , zn, %& . . . , ^ ) e Γ,*X
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for a.e x in a coordinate patch in X. We generalize Lempert's construction

to obtain the Lempert transformation uf(y) = u(x) + 2^h{gu{x)) where

x := Φ-1(j/) and Φ:X —> Y the mapping defined in (1.7), is assumed

throughout to be a bilipschitz homeomorphism almost everywhere (with

respect to Lebesgue measure) on X.

Let u G ACL(X, R) and let its gradient mapping gu'X —* T*X which

is a measurable section be defined by gu := (du)x G T*X for a.e. x G X.

i.e. for a.e x in a coordinate patch in X, gu(x) := (z\,..., zn, ^ ? •,

^ ) G TX*X. If we let UX:T*X -> X and Π y : Γ * y -> y denote the

canonical projections, then we can define a mapping Φ: X —> Y by

(1.7) Φ : = Π y o φ o guj a.e. on X,

which we assume is a bilipschitz homeomorphism almost everywhere. Recall

that a mapping Φ: X —> Y is lipschitz if there exits a constant C > 0 such

that

dsγ(Φ(x),Φ{y)) <Cdsx(x,y)

for all x and y in the domain of definition of Φ, where dsχ( , •) and dsγ(-, •)

are the respective Hermitian metrics on X and Y and bilipschitz if Φ is

a homeomorphism and both Φ and Φ " 1 are Lipschitz. From the point of

view of real analysis, the condition of being Lipschitz should be viewed as

a weakened version of differentiability. In fact, from classical theorem of

Rademacher (see [Whi.l], p. 272), we have that if f:U —> R m is a Lipschitz

function defined on an open subset U of Rn, then the distributional partial

derivatives ^ - , (1 < j < ra, 1 < k < n) are all given by functions in C°°(U)

(with respect to the Lebesgue measure dm). An immediate consequence of

this is that, local bilipschitz homeomorphism preserve the class of Lebesgue

measure.

In this paper, we are also interested in the pull backs of differential

forms and currents [see Bo.l] under special mappings, chief among these

are the gradient mappings gu: X —> T*X which are measurable sections for

every u G ACL(X,R) and Lipschitz mappings Φ: X —» Y between complex

manifolds. If (21, . . . , zn) are given local coordinates on X and a is the

differential form given by a = Y^j=ιζj{dzj)xi \/x G X then the pull-back

9uia) — Σ ? = i £j ° 9ud(zj o gu). Since gu is a measurable section we easily

see that d(zj o gu) = dzj G C°°. Thus #*(α) is well-defined. A similar

situation obtains for the symplectic 2-form ωx — Σ ? = i dξj Λ dzj. We have
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j = 1,2,. ..,ra.

We generalize these to Lipschitz mappings Φ: X —> y between complex

manifolds. Let Ω C C n be an open subset and Φ: Ω —» C m a lipschitz map.

Define the Jacobian matrix of Φ as the function dΦ G L°°(Ω,Mn ) m(C))

given by dΦ(x) = ( ^ )? where M n ? m (C) is the space of complex n x m

matrices. Let U C C n , V C C m , W C C^ be open subsets and Φ: U -> V,

Φ: V —» VF be Lipschitz maps, then Φoφ is also a Lipschitz map and we have

almost everywhere x G U; d(Φ o Φ)(x) = dΦ(Φ(a?)) o dΦ(α ) (cf. [Tell]). If

Φ, Φ " 1 are Lipschitz homeomorphisms between two open subsets [ / c C n ,

V C C m , then the class of Lebesgue measures is conserved by Φ (this

follows from a consequence of the Rademacher result). Let Φ: U —> C n be

a Lipschitz map and ω a measurable map ω\Cn —> Λc(Cm) with Λc(Cm)

the complexified bundle of the exterior algebra of C m . By the result of

Rademacher, we can pull back Φ*(CJ) on U as follows. Suppose that ω(y) =

a^dw^ Λ dwi2 Λ Λ diϋim, then Φ*(ω)(x) = a(Φ(x))Φ*(dwi1) Λ Λ

Φ * ( d ^ m ) , where Φ*(dwi) = Σ^idzj is in L°°(ί7,Λ^(Cm)). In particular,

we get a continuous linear map Φ*: L 2 (C n , Λ c (C m )) -> L2(i7, Λ c ( C m ) ) . Let

ω G L2(U, Λc(Cm)) considered as a current on U be given by the formula

Ju
ω Λ α

where α G C°°c(?7, Λ<c(Cm)). The exterior derivative of ω is the current

defined by
/•

(dα;,α) = € / α; Λ da
Ju

where 6 = ± 1 , a G C°°c(?7,Λc(Cm)) is homogeneous. We define Ωd(J7)

to be the subspace of L2(ί7, Λc(Cm)) consisting of those forms ω for which

the current dω is again a square integrable differential form. Ω^(ί7) is the

maximal domain of d.

THEOREM 1.2. ([Tel.l]) Let Ωd(V) C L 2 ( C n , Λ c ( C m ) . Then we have

Φ*(Ωd(V)) C Ωd(C7) and for any a G Qd(U)

Φ*(dα) = d(Φ*(α)) α.e. in £7

The above theorem is proved in H. Whitney [Whi.l] Theorem 9C, p. 305

for Lipschitz mappings F and flat forms ω, where a form ω is flat if ω and
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dω have bounded measurable components. A fortiori, the formula in the

theorem holds for Lipschitz mappings and smooth forms.

Let Φ:X —» Y be the mapping defined in (1.7) which we assume is a

bilipschitz homeomorphism almost everywhere on X. For v! £ ACL(Y, R)

we use Theorem 1.2 to define the current

(1.8) Φ*(ddu') :=

and in distribution sense Φ*(du) := d(Φ*(i/)).

The contents of this paper are as follows. In section 2 we give the

definition of the complex Monge-Ampere operator and the proofs of our

main results, Theorems 2.3, 2.4 and 2.5. In section 3 we consider an example

of the Lempert transform and apply this to prove a regularity result for an

exterior nonlinear Dirichlet problem for HCMAE which arises naturally in

pluricomplex potential theory.

§2. The Complex Monge-Ampere Equation

Let X be an n-dimensional complex manifold. Denote by d — d + d

the usual decomposition of the exterior differentiation in terms of its (1,0)

and (0,1) components and let dc — i(d — d). Let u be a, plurisubharmonic

function on X and let T be a closed positive current of bidimension (p, ρ),

i.e. of bidegree (n — p, n — q). Our objective is to define the wedge product

ddcu/\T even when neither u nor T are smooth. In particular, we are inter-

ested in the case of real-valued functions u which are absolutely continuous

on lines in X. A priori, in either of these cases this product does not make

sense because ddcu and T have measure coefficients and measures cannot be

multiplied. There is no feasible way of defining ddcu/\T as a closed positive

current without imposing additional hypotheses on u. If we now assume

for simplicity, that u is a locally bounded plurisubharmonic function then

the current uT is well-defined since u is a locally bounded Borel function

and T has measure coefficients. According to E. Bedford and B. A. Taylor

[B-T.2], also J.-P. Demailly [De.l], we define ddcuΛT := ddc(uT) where

ddc(-) is taken in the sense of distribution or current theory. It is shown

in [B-T.2, De.l] that the wedge product ddcu AT is again a closed positive

current. Given locally bounded plurisubharmonic functions u\,..., uq, we

define

ddcuλ Λ ddcu2 Λ . . . Λ ddcuq Λ T : = ddc{uλddcu2 Λ . . . Λ ddcuq A T ) ,
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inductively. This product by [B-T.2, De.l] is a closed positive current.

In particular, when u is a locally bounded plurisubharmonic function, the

bidegree (n,n) current (ddcu)n is well-defined and is representable by a

positive Borel measure. If u is of class C 2 , an easy computation in local

coordinates on the complex manifold X yields

^ - 4nn! idzi ΛdziΛ ... Λi dzn A dzn.

dzjdzk\

Next, we need the following monotone continuity theorem

THEOREM 2.1. ([B-T.2]) If uι,... ,uq are locally bounded plurisubhar-

monic functions and u\,...,u^ are decreasing sequences of plurisubhar-

monic functions converging pointwise to u\,... ,uq with {T^ := T} a con-

stant sequence of closed positive currents, then

(i) u\ddcu\ Λ . . . Λ ddcUq A T —> u\ddcU2 A . . . Λ ddcuq A T weakly.

(ii) ddcu\ A ddcu\ Λ... Λ ddcu\ A T -> ddcuλ A ddcu2 Λ... Λ ddcuq A T weakly.

THEOREM 2.2. Let X be an n-dimensional complex manifold and u G

PSH(X) Π ACL(X,M). Let (z i , . . . ,2 n ) ^ e the holomorphic coordinates

in a coordinate patch Ω C X. Suppose ddcu — ̂ iY^jk=iak^zj Λ ^k,

where [a .̂ ] G L^oc(Ω), 1 < q < n. Then (ddcu)q is a current of bide-

gree (q,q) and order zero which has locally integrable coefficients given by

Proof. Since the result is local, if u satisfies the hypothesis of the

theorem, then we can use a convolution with a family of C°° regularizing

sequences pe, e > 0 to find a decreasing sequence ue = u * pe of smooth

plurisubharmonic functions converging pointwise to u (Ξ ACL(Ω,M) such

that df.df converges to α. ̂  = Q^ &k l°caHy i n Lq. The result now follows

from the weak continuity of (ddcu)n from Theorem 2.1. Π

THEOREM 2.3. Let X and Y be two complex manifolds of equal com-

plex dimensions n. Let Φ: X —> Y be the mapping defined in (1.7) which

we assume is a bilipschitz homeomorphism almost everywhere on X. Let

u G ACL(X,M). Choose a point y G Y, set x := Φ~1(y) and define the

Lempert transformation of u by:

(2.1) u'{y):=u(x)
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Then ddu = Φ*dduf. Furthermore, if the symplectic biholomorphism Φ:
Γ*X —* T*Y satisfies Φ*αy = ax, then du = Φ*dv! in the sense of distri-
butions.

Proof. The proof proceeds in four steps.

First Step:

We show that

(i) du = glμχ

(ii) du — g^(aχ + otχ) where ax = Σ^i'ξjdzj, is a (0, l)-form on T*X
and also that

(iii) ddu = g^ωx.

Let (z\,..., zn) be given local coordinates on X such that (zi,..., zn, ξι,...,
ξn) is the corresponding local coordinates on T*X. The gradient mapping
gu:X-^> T*X which is a measurable section almost everywhere on X, has
the form gu(zu ...,zn)= [zu ..., zn, -§^,..., ^ j a.e. Now g*(aχ) is well-

defined as observed previously and has a sense, since gu is a measurable
section a.e, on X and gu{dzj) = d(^ o g^) = d^ G C°°. Hence

n f)

Similarly since the function u is real-valued function, we have that du
gζax. But du = du + du, so that

Also
5 = ddu = d f̂*αχ = d(αχ o pw) =

Second Step:

We show that \ig\X —• T*X is a measurable section almost everywhere
such that du = ^*(αχ + αχ), then g must be the gradient mapping gu: X —>
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T*X almost everywhere of u G ACL(X,M). Indeed in local coordinates as

in the first step g has the local representation

g(zι, . . . , Zn) = (51(21, . . , Zn), ,9n(zi, , ̂ n), . , 92n(zi, > zn))

Since 9j{z\,..., zn) = Zj, \fj — 1,. . . , n and as 5 is a measurable section,

then g*(aχ -f α j ) = Y^j(9n+j^zj + Vn+jd~Zj) For this to be the same as

du, we must have g n + J = βj- a.e. Vj = 1,.. ., n.

Third Step:

We show that if Φ:T*X -> Γ*y, p u : X -> Γ*X; ^ : Y -> T * F and

Φ: X —> Y are given maps then Φ o ^ u = ^/ o Φ. To see this define a

mapping g: Y —* T*y by the equation: 5 := Φ o gu o Φ " 1 . We need to show

that g — gu'- By equation (1.7), Πy o 5 is an identity mapping on 7 , so

that g is a section of Γ*F. To show that g — gu'-> by the second step, it is

enough to verify that g*(aγ -fay) = dv!. This is the same as showing that

Φ*#*(αγ + αy) = Φ*du'. But

Φ*g*(aγ + ay) = flf*Φ*(αy + aγ) = g^(ax + ax + dh + dh)

ogu = d(uf oφ) = Φ*duf.

Finally

Fourth Step:

Using the first and the third steps we can write Φ*ddu' := d(Φ*du') =

dΦ*«,αy) = Φ*5*,dαy - Φ*^,α;y = Φ ^ Φ " 1 ) * ^ * * ^ - g*ωχ = dθu,

where the first equality is by the definition (1.8). Furthermore, if Φ is such

that Φ*αy = ax then

φ*dv! = Φ*^/αy = Φ^Φ'Yffj r α y

This completes the proof of the theorem. •

The next theorem is a natural corollary of the theorem above.

THEOREM 2.4. Let u e ACL(X,R) and suppose that v! G ACL(Y,R)

with u'(y) = ix(x) + 23?/ι(pw(x)). Suppose Φ: X —> F ; is as in Theorem 2.3.

Let gucY —> Γ*F δe ί/ie gradient mapping ofv! a.e, such that gf

u, G 1/^(3^),

(<V o Φ) ; G L^C(X), (LP(M), 1 < p < 00 denotes the usual Lp-spaces with
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respect to Lebesque measure and L™C(M) is the space of all locally bounded

measurable functions on the space M), with the coefficients of d(gu> o Φ) G

Lγoc(X), where gf

u, and (gu/oφ)1 are the derivatives. Then ifu G ACL(X,R)

satisfies HCMAE, i.e. (ddu)n = 0, 50 also is (βduf)n = 0.

Proof From Step four in the proof of the theorem above we have

n

Φ*(ddu') = Φ*g*,ωγ = Φ*g*,γ^dηj Λ dWj

n n

= Φ* ] P dgu>,n+j Λ d i ^ = ^ d{gu>,n+j o Φ) Λ dΦ^ .

Since 95^' is now a differential form and the coefficients of d(guι o Φ) G

L^C(X), we deduce that dv! Λ 9 9 ^ is a differential form with coefficients

which are functions in Lγoc(X). Hence Φ*(du' Λddu') is well-defined. So we

can form dΦ*(duf A (dduf) — ddu Λ ddu. Now by iterating this process n

times we obtain (ddu)71 = Φ*(ddu')n. Thus if (ddu)71 = 0 then we deduce

that (ddu')n = 0. D

THEOREM 2.5. Let X and Y be two n-dimensional complex manifolds

and let Φ:X -> Y defined for u G PSH(X) Π ACL(X,R) be as in Theo-

rem 2.3. Choose y G Y, set x := Φ~ι(y) and denote the Lempert transfor-

mation of u by uf(y) = u(x) + 2$lh(gu(x)). Then

(i) ddu = Φ*(ddu'),

(ii) // Φ*ay = a x lϋe Ziâ e du = Φ*duf in the sense of distributions and

(iii) // ί/ie coefficients of ddu1 are in Lγoc(X) and if (ddu)n — 0 then

(B'Y = 0.

Proof. The proof follows the same line of reasoning as in that of the

preceeding Theorems 2.3 and 2.4. Q

§3. Applications of Lempert Transformations

In this final section we give an example of Lempert transformation

[Lem.2] which is applied to an exterior nonlinear Dirichlet problem aris-

ing in pluricomplex potential theory [KL.l]. We also introduce a class of

bounded strictly linearly convex domains in C72"1"1 and P n(C) and recall
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that Lempert in [Lem.l] and [Lem.4] studied the exponential map for the

Kobayashi metric which he showed is a Finsler metric. The main result of

[Lem.l], used here is that the exponential map can be normalized to define

a smooth diffeomorphism from the unit infinitesimal Kobayashi ball minus

the origin onto the domain minus the base point and that its restriction to

each line through the origin is holomorphic. We now give the definitions of

these domains.

DEFINITION. A bounded domain Ω C P n(C) is called linearly convex

if for every point z in its complement P n(C) \ Ω there is a nonempty set of

complex hyperplanes through z which is disjoint from Ω, i.e. Ω is linearly

convex if its complement P n(C) \ Ω can be written as a union of complex

hyperplanes.

DEFINITION. Ω C P n(C) is said to be strictly linearly convex if it is

bounded by a C2 boundary and its C2 perturbations are linearly convex. If

p is a C2 defining function for Ω a strictly linearly convex bounded domain

Ω = {z e P n (C); p(z) < 0}, <9Ω = {p = 0} and dp φ 0 on <9Ω then for all

z e <9Ω

d2p(z)wjU>k v ^ d2p(z)wjWk
>

j,k=l
dzjdzk j,k=l

holds for every nonzero vector w — (WJ)?=I £

The complex tangent hyperplane Γ^(C) has a unique point of contact {z}

with 9Ω which is no higher than first order of contact.

EXAMPLE 3.1. Let X = Y = Cn and T*X = T*Y = Γ*C n . Let

z = (z i , . . . , zn) be the standard holomorphic coordinates on C n and ξ =

(£i> >£rι) the fibre coordinates on Γ*C n . Define the symplectic biholo-

morphic mapping Φ: Γ*C n -> Γ*C n : Φ ( ^ , ξj) = (wj,ηj) by setting WJ = ξj,

and ηj = —Zj. Then

This gives the holomorphic function h: Γ*Cn-^>C as h(zj,ξj) = —
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Now let u G ACL(Cn,R) and set Wj = ( ^ ^ ) almost everywhere.

Then

3=1 J

almost everywhere, is the Lempert transformation C\u —» v! given by

Cu(z) = ( Q2 ) a.e. We obtain the following corollary to our Main Theo-

rem.

COROLLARY 3.2. Let Cu(z) = (^0) a.e. Then ddu = C*u~dduf.

Nonlinear Dirichlet problem.

Find a real-valued function U defined on the complement, Cn \ Ω of Ω,
where Ω is a strictly linearly convex bounded domain, with the following
properties:

UePSH(Cn\ϊϊ)

(EDP)
=0 inCn\Ω

= log||z||+O(l) as ||^|| -> 00

THEOREM 3.3. Suppose Ω C Cn C Pn(C) is a bounded strictly linearly
convex domain with C2 boundary dft. Then the problem (EDP) admits a
unique C2 solution U: Cn \ Ω —> R.

Remarks on Extremal Mappings.

Let D c C b e the unit disk with the usual hyperbolic metric which we
denote by hyp. This metric, as is well-known, is invariant under biholo-
morphic self-mappings of D := {z G C;|z| < 1}. As in [Lem.4] consider
ί ί c C n < - > Pn(C) a C°° strictly linearly convex bounded domain. Given
z,u>EΩ, Z φ W, a holomorphic mapping /:D —•» Ω is called an extremal
mapping with respect to the points z, w in Ω if /(0) = z, /(ξ) — i/; with
0 < ξ < 1 and if for any holomorphic mapping g: D —> Ω such that ^(0) = 2,
(7(77) = tϋ with 0 < η < 1 we have ξ < 77, or infinitesimally, given 2: G Ω and
a direction vector v G Cn, v 7̂  0 we call a holomorphic mapping /: D —> Ω,
extremal with respect to z, υ, if /(0) = 2, /;(0) = λi> for some λ > 0 and if
for any g: D —> Ω such that gf(O) = z, gf(0) = μf, μ > 0, we have λ > μ.

We now consider pseudodistances on arbitrary domains in Cn. Of par-
ticular interest are the Caratheodory and Kobayashi pseudodistances. Let
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Ω be a bounded domain in C n we define the Caratheodory pseudodistance,

[Lem.5], on Ω as

(3.4) CQ(z, W) :=

f: Ω —> D, holomorphic mapping},

where CQ(Z,W) < oo, Vz,iί; G Ω. As the Caratheodory pseudodistance on

the domain Ω is defined by means of mappings from Ω into D it is natural

to look at mappings from D into Ω. For points z and w in a domain Ω we

let

(3.5)

3 holomorphic map, /: D —• Ω, f(ξ) — z, f(ω) — w}.

This definition presuposes the existence of holomorphic mapping /: D —> Ω

whose range contains both z and u?. We define the Kobayashi pseudodis-

tance as the largest pseudodistance which is smaller than δς}.

DEFINITION. The Kobayashi pseudodistance for a domain Ω, Kς\, is

defined as

(3.6) \τd{y^δςι{wj,wi+ι,{z = w1,...,wn+ι = w} CΩ\.
ί n

inf< ^2

The extremal mappings / in (3.5) are characterized implicitly by the

following result.

THEOREM 3.7. ([Lem.4]) A holomorphic mapping f:Ό —> Ω is ex-

tremal for the variational problem (3.5) if and only if it satisfies the fol-

lowing three conditions:

(i) / smoothly extends to the closed disk D,

(ii) f(dB) C dΩ

(iii) The family T9/£\(dΩ), f(ζ) G <9Ω of complex tangent hyperplanes to <9Ω

at f(ζ) can be included in a smooth, holomorphic family {£/.(£); ζ G D}

of complex hyperplanes in C n .
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Condition (iii) means precisely that there is a smooth family {£/(£); ζ G

B} of complex hyperplanes in C n such that £/(<;) is tangent to <9Ω at f(ζ) and

therefore coincides with T?L\(c?Ω). It is easy to see that in this case f(ζ) G

£f(ζ) for all ζ G D, so that £/(£) are the fibres of a smooth subbundle of

the restricted bundle Γ(C n ) [7(5), where Γ(C n ) is the holomorphic tangent

bundle of C n .

COROLLARY 3.8. ([Lem.4]) Let Ω c C n ^ Pn(C) 6e a strictly linearly

convex domain. Then KQ = CQ.

The Theorem 3.7 above holds for domains Ω with only C2 boundaries

<9Ω. To see this, it is enough to approximate Ω in the C2 topology by a

sequence of C°° strictly linearly convex bounded domains (Ω/c)^=1 and to

recall that by Lempert's Holder estimates, [Lem.4], the 1/2-Hόlder norms

of the corresponding extremal mappings /&: B —> Ω& and the associated

mappings //~ defined as follows: First let v{z) G C n denote the exterior

normal vector to <9Ω at z G <9Ω, then there exists a positive smooth function

p: <9B —•> R+ such that the mapping

can be extended to a C°° mapping /fc:B —> Cn that is holomorphic in

D. The maps /& are uniformly bounded and furthermore, the norms of

|/fc(C)|> f° r C G dΌ are bounded away from zero. Thus a subsequence of the

mappings (fj^^i converges uniformly to f:Ώ —> Ω and the corresponding

subsequence of the mappings (/fc)ί£Li converge uniformly to / : D —* Cn

which satisfy the conditions (i)-(iii) of the theorem. Therefore, / is an

extremal map with respect to the given data. Now, since extremal maps

are unique, this means that an extremal mapping with respect to some given

data satisfies (i)-(iii) even when the boundary of the domains Ω in question

are only of the class C 2 . Further important property of extremal maps is

that if /: D —» Ω is an extremal map, and ζ φ ω are arbitrary points in D,

then the extremal map with respect to f(ζ) and f(ω\is just / o α, where

α: O —• B is an automorphism that sends ζ to 0 and α t o a positive number.

In particular, f(ζ) φ /(ω) More generally, / is a homeomorphic embedding

of Ώ> into Ω. In a similar fashion, the extremal with respect to the point

f(ζ) and the direction f(ζ) is again / o a with a suitable automorphism

a of B. Thus to prove our Theorem 3.3 we can consider bounded strictly

linearly convex domains with C°° boundaries and C°° solutions which can
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then be approximated in the C2 topology to the required situation in the
theorem. In the following proof we think of everything as in the class C°°
and then the final results are a consequence of the approximation procedure
explained above.

Proof of Theorem 3.3. Reduce the problem to a nonlinear interior
Dirichlet problem in the following way. First embed Cn in Pn(C) by iden-
tifying a point z G Cn with the class [(1,2)] G Pn(C). Next consider the
dual complement C*Ω C P£(C), the dual domain to Ω. C*Ω is a domain
with a preferred point 0* G C*Ω in its interior which corresponds to the
complex hyperplane at infinity. The boundary <9C*Ω of C*Ω consists of
those complex hyperplanes in Pn(C) that are tangent to <9Ω.

LEMMA 3.9. C*Ω is a C2 bounded strictly linearly convex domain.

Proof. Consider a C2 mapping 7:<9Ω —> 5C*Ω given by 7(2) = z*

where z* is the complex tangent hyperplane to 9Ω at the point z G <9Ω. Ω a

strictly linearly convex bounded domain implies that the complex tangent

hyperplanes to <9Ω are disjoint from the closure Ω of the domain Ω except at

the unique point of contact z and that these complex tangent hyperplanes

have no higher than first order of contact with <9Ω, hence the C2 correspon-

dence z f—> 2* is a one-to-one and onto mapping. Now 5Ω is of class C2 and

to see that the boundary 9C*Ω of C*Ω is of the class C 2 , we let p G C2 be

the defining function of the domain Ω such that

d2p(z) _
W3Wk

d2p{z)
WJWk

j,/c—1

holds for every nonzero vector w = (wj)™=1 G T^(9Ω), and for every 2 G <9Ω.
But, 7(2) = 2* if and only if z is a critical point of p restricted to the
complex hyperplane 2*. Since the critical point is nondegenerate for strictly
linearly convex bounded domains Ω we can define a C2 mapping 7* in the
neighbourhood of the boundary 9C*Ω of C*Ω by setting 7* (2*) to be equal
to the critical point of the restriction of p to the complex hyperplane 2*.
This then implies that 7* o 7 is the identity mapping on #Ω, which in turn
implies that the boundary dC*Ω is of class C2. Finally we show that <9C*Ω
is strictly linearly convex. For this, we first assume that Ω is the projective
image of a ball and introduce a system of affine coordinates so that in that
system Ω is the ball centred at the origin. Clearly in this case C*Ω is a ball
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and hence strictly linearly convex. The general case is obtained by taking

a point z G <9Ω and inscribing a ball B inside Ω tangent to dΩ at the point

z E dΩ. The dual complements C*B and C*Ω are then tangent at the point

z*, and the complex tangent hyperplanes of dC*M and #C*Ω coincide at

z*. Since C*B is strictly linearly convex, the complex tangent hyperplane

is then disjoint from C*Ω \ {z*} and has precisely a first order of contact

with <9C*Ω. D

Now consider C*Ω contained in (Cn)* *-> P£(C) because the origin of

C n is contained in the interior of Ω so that the hyperplane at infinity is

contained in the interior of C*Ω and furthermore, C*Ω does not contain

any complex hyperplanes arising from points in the interior of Ω. We can

think of C*Ω as given by

C*Ω := {w G (Cn)*; (z, w) φ 1, z G Ω}

where ( , •): C n x (Cn)* —•> C is the usual pairing. We now return to the non-

linear Dirichlet problem (EDP) and consider the interior Dirichlet problem

for a function u*: C*Ω \ {0*} -» R:

u* GP5i/(C*Ω\{0*})

det[a&]=0 inC*Ω\{0*}

u*(w) = log ||κ;|| + O(l) as w -> 0*

n*(iϋ) = 0 if w

(IDP)

with 0(1) = η(w/\w\) + 0(\w\), where η G C 2 (P n _i(C). The problem (IDP)

admits a unique C2 solution u*: C*Ω \ {0*} —> R. To show this we define

the transformation £u* (w) = z if

du*{w)

^ du*(w)
(3.10)

where ^ = ( dJ ? 5 aw )* ^ e c^a™ ^^a^ (3.10) is a C2 diffeo-

morphism of C*Ω \ {0*} onto C n \ Ω. This is a consequence of the following

lemma.
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LEMMA 3.11. The subleυel sets

C*Ωc:={tϋGC*Ω;τx*H < c}

are C2 bounded strictly linearly convex sets for any c < 0.

We assume the lemma is true for the moment and proceed with the

proof of the problem (IDP). It is clear that the denominator of the ex-

pression in (3.10) does not vanish in C*Ω \ {0*}. This implies that Cu* G

C2(C*Ω \ {0*}). To see that £u* is a diffeomorphism of C*Ω \ {0*} onto

C n \ Ω, we note that £u* (w) = z if and only if to is a critical point of the re-

striction of u* to the complex hyperplane {("*; (ζ*, z) = 1} = Hz contained

in (C n)*. Lemma 3.11 then implies that on any complex hyperplane that

intersects C*Ω, the restriction of u* to Hz has exactly one critical point.

Now Hz ΓΊ C*Ω φ 0* if and only if z G Cn \ Ω. This further, implies that

Cu* is one-to-one from C*Ω\{0*} onto C n \ Ω . The mapping £~}'. z* κ-> z is

C 2 , since Lemma 3.11 implies that the critical point z* of the restriction of

u* to the complex hyperplane Hz is nondegenerate and depends smoothly

on the complex hyperplane Hz and hence on the point z. This implies that

£u* is a diffeomorphism as claimed.

Next define u: Cn \ Ω -> R by u = u* o C~} and set U = -u. In

an equivalent way we can set u(z) to be equal to the critical value of the

restriction of u* to the complex hyperplane Hz. Then clearly both u and U

are of the class C2 and by Corollary 3.2 satisfy the homogeneous complex

Monge-Ampere equation. Now because £*(<9C*Ω) = <9Ω we easily see that

u = U — 0 on 9Ω. The distance of the complex hyperplane Hz to 0 is

\\z\\~1. Thus E/(z) = - log | | z | | + O ( 1 ) .

Finally Ωc = {z G C n \ Ω U(z) < c} U Ω are strictly linearly convex

as these are the dual of the sets C*ΩC = {w G C*Ω;u*(tt;) < — c} and

Ωc = {z G C n ;sup \(w,z)\,w G C*ΩC}. Lemma 3.9 now applies with Ω

and C*Ω replaced by C*ΩC and Ωc. The linear convexity of the sublevel

sets of U and the fact that U satisfies det J? F = 0 implies that U is

a plurisubharmonic function. The uniqueness assertion follows from the

minimum principle of E. Bedford and B. A. Taylor [B-T.l].

Proof of Lemma 3.11. We call C*Ω, Ω and ιx*, tx. In [Lem.l] Lempert

constructs a C2-diffeomorphism Φ0:Ω \ {0} -> B^ \ {0} := {z G C n ;0 <

11*11 < 1} such that u = log ||Φo|| The existence of such a C2 map Φo implies

that the sublevel sets of u are C2. Next we show that the sublevel sets {u <

https://doi.org/10.1017/S0027763000025058 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025058


80 S. M. EINSTEIN-MATTHEWS

constant} are strictly linearly convex. Take z G <9ΩC := {u(z) = c; c < 0}

the boundary of the sublevel set Ωc := {u < c}. From [Lem.2] there exists

a unique holomorphic mapping / from the closed unit disk D into Ω with

ξ = expc such that /(0) — 0, /(£) = z and / depends continuously on

z G Ω \ {0}. Further / is an embedding. In particular, / is transverse

to <9Ω. In [Lem.2] Lempert further constructs a holomorphic left inverse

F: Ω —> D to / with the following properties:

(i) Its fibres F~1(ξ), ξ G D are hyperplanes restricted to the neighbour-

hood of Ω

(ii) \F(z)\<liizeU\f(dO)

(iii) dF φ 0 on Ω.

We claim that F~λ(ξ) is a complex tangent hyperplane to <9ΩC at z.

Since ξ = F{z) the fact that f(ξ) = z implies that z lies on the complex

hyperplane F~1(ξ). To verify the claim it is therefore, enough to show that

no other point w G Ωc can lie on F~1(ξ). Now for any such w G Ωc there

exists a holomorphic mapping g: D —•> Ω such that g(0) = 0 and £f(u;) = tu

with α; = expu(w) < ξ. We apply Schwartz's Lemma to F o g:D —> D to

give ξ > CJ > \F(g(ω))\ = \F(w)\ and ξ = F(w) i.e., it; G F'1^) can hold

only if Fog = id®. This by property (2) and the uniqueness of the mapping

/ can happen only if / = g, that is to say, w = z. Thus F~ 1(ξ) is indeed

the complex tangent hyperplane to <9ΩC. Now it remains to show the order

of contact between <9ΩC and F~1(ξ>). Let z(t), 0 < t < 1 be a smooth curve

on 9ΩC tangent to F~ 1(ξ) at z = z(0). Then it is not tangent to /(D).

Therefore, if /ί, 0 < ί < 1 is the holomorphic mapping /t :D —> Ω such

that /t(0) = 0 and ft(ξ) = z(t), then we have dist(z(ί), /(D)) > C\t\, with

C > 0 and dist(/ ί(D),/(D)) > C\t\ in view of the continuous dependence

of / on z. In particular, for ξ G dD, dist(/*(£), /(©)) > C|ί|. However, the

complex hyperplanes F~λ(ξ) have precisely first order of contact with c?Ω,

so that \F(ft(ξ))\ < 1 — Cί 2 . Schwartz's Lemma applied again to Foft now

shows that \F(ft(ξ))\ < ξ(l-Ct2), that is to say, |F(*(ί)) | < ξ-Ct2. This

implies that z(t) has no more than first order of contact with F~1(ξ). D

The interior problem (IDP) can be formulated in a slightly more general

way. Let Ω be a strictly linearly convex bounded domain and l o G f i a fixed

point. Consider all the extremal mappings / : D —> Ω such that /(0) = w.

Along these extremal maps we push-forward the Green function of the unit
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disk D c C , i.e. log \ζ\, with pole at 0 to get a smooth function u: Ω —>• R.
This function can be taken as the Green function of Ω for the pluricom-
plex potential theory associated with the complex Monge-Ampere operator
(ddc-)n studied in [B-T.2] as demonstrated in the following theorem.

THEOREM 3.12. Let Ω C Cn be a strictly linearly convex bounded do-
main with C2 boundary and let w G Ω be a given fixed point. Then the
problem

uePSH(Ω\{w})

(DP)
u(z) = log \\z — w\\ + O(l) as z —* w

, u(z) = 0

admits a unique C2 solution u:Ω\ {w} —> R.

Proof. Here briefly are the ideas Lempert used in [Lem.l] to prove
the above theorem for strictly convex bounded domain, i.e. a domain Ω,
where the normal curvatures of c?Ω are everywhere positive. The same
ideas apply in our case. Associated to the solution u of the theorem, there
is a foliation of Ω \ {w} which we call the Lempert foliation of Ω \ {w}.
Let μ = e2u. Assume r: Ω* —• Ω is the blow-up of Ω at the point w. Then
u* = μ o r E C°°(Ω*). Each leaf of the foliation is an extremal disk for the
Kobayashi metric through w. The key idea of the proof is that extremal
mappings exist for strictly linearly convex bounded domains, are unique for
any given directions and extend smoothly up to the boundary [Lem.4] and
[CHL.l]. The solution is then obtained by pushing forward log |ζ"|2 from the
unit disk. Since extremal disks are transversal to the holomorphic tangent
bundle to <9Ω, it is then easy to see that the function u defined in this way
and suitably extended outside of Ω is a defining function for Ω and is thus
a plurisubharmonic function. The details of the proof are then exactly as
in [Lem.l] and so are omitted here. Π
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