NOTE ON SCHIFFER'S VARIATION IN THE CLASS OF UNIVALENT FUNCTIONS IN THE UNIT DISC

KIKUJI MATSUMOTO

1. Let S denote the class of univalent functions f(z) in the unit disc D:|z|<1 with the following expansion:

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots + a_n z^n + \cdots$$

We denote by $f_n(z)$ the extremal function in S which gives the maximum value of the real part of a_n and by D_n the image of D under $w = f_n(z)$. Schiffer proved in his papers [1] and [2] by using his variational method that the boundary of D_n consists of analytic slits w = w(t), t being a real parameter, satisfying

(2)
$$\left(\frac{dw}{dt}\right)^2 \frac{1}{w} \sum_{k=2}^n \frac{a_n^{(k)}}{w^k} < 0,$$

where $a_n^{(k)}$ is the *n*th coefficient of $f_n(z)^k = \sum_{\nu=k}^{\infty} a_{\nu}^{(k)} z^{\nu}$, so that follows from the Schwarz reflection principle

(3)
$$\frac{z^2 f'_n(z)^2}{f_n(z)} \sum_{k=2}^n \frac{a_n^{(k)}}{f_n(z)^k} = (n-1)a_n + \sum_{k=1}^{n-1} k \left(\frac{a_k}{z^{n-k}} + \bar{a}_k z^{n-k}\right)$$

in the z-plane. Thus the left-hand side of (3) is due to a variation of the range D_n . In this note, we shall show that the right-hand side of (3) is due to a variation of the domain D.

2. For a complex number τ , a real number τ and a sufficiently small r > 0, we consider the finite *w*-plane slit along the segment $S(\tau; r, \tau)$ with end points $\tau - re^{i\tau}$ and $\tau + re^{i\tau}$ and denote it by $\Omega(\tau; r, \tau)$. For ω , $-1 < \omega < 1$, let $\Lambda^+(\tau; r, \tau, \omega)$ and $\Lambda^-(\tau; r, \tau, \omega)$ be the circular arcs with end points $\tau - re^{i\tau}$ and $\tau + re^{i\tau}$ where they make with $S(\tau; r, \tau)$ inner angles being equal to $\pi\omega$. We denote by $\Delta(\tau; r, \tau, \omega)$ the domain which is

Received June 19, 1967.

obtained from the finite w-plane when we delete the closure of the domain bounded by $\Lambda^+(r; r, \tau, \omega) \cup \Lambda^-(r; r, \tau, \omega)$. Then the mapping function which maps $\Omega(r; r, \tau)$ conformally onto $\Lambda(r; r, \tau, \omega)$ is obtained by

(4)
$$\eta = r e^{i\tau} \frac{(w-\tau + r e^{i\tau})^{1-\omega} + (w-\tau - r e^{i\tau})^{1-\omega}}{(w-\tau + r e^{i\tau})^{1-\omega} - (w-\tau - r e^{i\tau})^{1-\omega}} + \tau,$$

and hence it has the following expansion with respect to r:

(5)
$$\eta = \frac{w-r}{1-\omega} \left(1 - \frac{\omega(2-\omega)e^{2i\tau}}{3(w-r)^2}r^2 + o(r^2)\right) + \tau.$$

3. For a real $\delta > 0$, we consider the mapping function which maps $\Delta(r; r, \tau, 1/2)$ conformally onto $\Omega(r; r, \tau + \delta)$. This is obtained by

(6)
$$\xi = \frac{\eta + \gamma}{2} + \frac{e^{2i(\tau+\delta)}}{2(\eta-\gamma)} r^2.$$

Now we set $\omega = 1/2$ in (5) and substitute the resulting right-hand side of (5) for η of (6). Then we have

(7)
$$\xi = w - \frac{(1 - e^{2i\delta})e^{2i\tau}}{4(w - r)}r^2 + o(r^2),$$

which maps $\Omega(\tau; r, \tau)$ conformally onto $\Omega(\tau; r, \tau + \delta)$.

4. We note that the extremal function $f_n(z)$ can be continued analytically in some neighborhood of each $\varepsilon = e^{i\theta_0}$ on C: |z| = 1, except for finitely many points, because of the analyticity of the boundary curve of D_n . Let $\varepsilon = e^{i\theta_0}$ be such a point on C. Now we set $\gamma = f_n(\varepsilon)$ and $e^{i\tau}r = i\varepsilon f'_n(\varepsilon)\rho + o(\rho), \ \rho = \theta - \theta_0$, in (7) and then substitute $f_n(z)$ for wthere. We have

(8)
$$\xi = g(z) = f_n(z) + \frac{(1 - e^{2i\delta})\varepsilon^2 f'_n(\varepsilon)^2}{4(f_n(z) - f_n(\varepsilon))} \rho^2 + o(\rho^2).$$

Normalizing g(z) so that the resulting function vanishes and its derivative is 1 at the origin, we see that there is a function $f^*(z)$ in S with the following form:

(9)
$$f^{*}(z) = f_{n}(z) + \frac{(1 - e^{2i\delta})\varepsilon^{2}f'_{n}(\varepsilon)^{2}f_{n}(z)^{2}}{4f_{n}(\varepsilon)^{2}(f_{n}(z) - f_{n}(\varepsilon))}\rho^{2} + o(\rho^{2}),$$

and hence

(10)
$$f^{*}(z) = z + \sum_{\nu=2}^{\infty} \left\{ a_{\nu} - \frac{(1 - e^{2i\delta})\varepsilon^{2} f'_{n}(\varepsilon)^{2}}{4f_{n}(\varepsilon)} \left(\sum_{k=2}^{\nu} \frac{a_{\nu}^{(k)}}{f_{n}(\varepsilon)^{k}} \right) \rho^{2} + o(\rho^{2}) \right\} z^{\nu}.$$

Since $f_n(z)$ is the extremal function, we have

(11)
$$\mathscr{R}\left\{\frac{(1-e^{2i\delta})\varepsilon^2 f'_n(\varepsilon)^2}{4f_n(\varepsilon)}\sum_{k=2}^n \frac{a_n^{(k)}}{f_n(\varepsilon)^k}\right\} \ge 0,$$

where δ is an arbitrary real number. Hence we have a result of Schiffer [1]:

(12)
$$\frac{\varepsilon^2 f_n'(\varepsilon)^2}{f_n(\varepsilon)} \sum_{k=2}^n \frac{a_n^{(k)}}{f_n(\varepsilon)^k} \ge 0.$$

5. For $\theta_0(0 \leq \theta_0 < 2\pi)$, $\varphi(-1/2 < \varphi < 1)$ and a small $\rho > 0$, $C(\theta_0; \rho)$ denotes the complement of the subarc r = 1, $\theta_0 - \rho < \theta < \theta_0 + \rho$ $(z = re^{i\theta})$ of C and $\Gamma(\theta_0; \rho, \varphi)$ the circular arc with end points $e^{i(\theta_0 - \rho)}$ and $e^{i(\theta_0 + \rho)}$ where it makes with $C(\theta_0; \rho)$ inner angles being equal to $(1 + \varphi)\pi$. We denote by $D(\theta_0; \rho, \varphi)$ the domain bounded by $C(\theta_0; \rho) \cup \Gamma(\theta_0; \rho, \varphi)$. Then the mapping function $\zeta = \zeta(z)$ with $\zeta(0) = 0$ and $\zeta'(0) > 0$ which maps conformally $D(\theta_0; \rho, \varphi)$ onto the unit disc $|\zeta| < 1$, is obtained by

$$(13) \quad \boldsymbol{\zeta} = \varepsilon e^{-i\rho/(1+\varphi)} \times \\ \times \frac{\left\{ \left(i - \frac{\varepsilon z - \cos\rho/(1+\sin\rho)}{1-\varepsilon z\cos\rho/(1+\sin\rho)}\right) \middle/ \left(1 - i \frac{\varepsilon z - \cos\rho/(1+\sin\rho)}{1-\varepsilon z\cos\rho/(1+\sin\rho)}\right) \right\}^{1/(1+\varphi)} - e^{i\rho/(1+\varphi)}}{\left\{ \left(i - \frac{\varepsilon z - \cos\rho/(1+\sin\rho)}{1-\varepsilon z\cos\rho/(1+\sin\rho)}\right) \middle/ \left(1 - i \frac{\varepsilon z - \cos\rho/(1+\sin\rho)}{1-\varepsilon z\cos\rho/(1+\sin\rho)}\right) \right\}^{1/(1+\varphi)} - e^{-i\rho/(1+\varphi)}},$$

where $\varepsilon = e^{i\theta_0}$. Hence the inverse function is obtained by

(14)
$$z = \varepsilon \frac{(i+e^{i\rho})(1-\overline{\varepsilon}e^{i\rho/(1+\varphi)}\zeta)^{1+\varphi}-(1+ie^{-i\rho})(e^{i\rho/(1+\varphi)}-\overline{\varepsilon}\zeta)^{1+\varphi}}{(1+ie^{-i\rho})(1-\overline{\varepsilon}e^{i\rho/(1+\varphi)}\zeta)^{1+\varphi}-(i+e^{i\rho})(e^{i\rho/(1+\varphi)}-\overline{\varepsilon}\zeta)^{1+\varphi}}$$

so that we have the following expansion with respect to ρ :

(15)
$$z = \zeta \Big(1 + \frac{\varphi(2+\varphi)(1+\bar{\varepsilon}\zeta)}{6(1+\varphi)^2(1-\bar{\varepsilon}\zeta)} \rho^2 + o(\rho^2) \Big).$$

6. Substitute $2\omega/(1-\omega)$ for φ in (15) and the resulting right-hand side of (15) for z of $w = f_n(z)$. Now compose this with (5), where $\gamma = f_n(\varepsilon)$ and $e^{i\tau}r = i\varepsilon f'_n(\varepsilon)\rho + o(\rho)$, and normalize the composite function so that the resulting one vanishes and its derivative is 1 at the origin $\zeta = 0$. Then we see that there exists a function $f^*(\zeta)$ in S with the following form : KIKUJI MATSUMOTO

(16)
$$f^{*}(\zeta) = f_{n}(\zeta) + \left\{ \frac{2\omega}{3(1+\omega)^{2}} (f_{n}'(\zeta)\zeta \frac{1+\tilde{\varepsilon}\zeta}{1-\tilde{\varepsilon}\zeta} - f_{n}(\zeta)) + \frac{\omega(2-\omega)\varepsilon^{2}f_{n}'(\varepsilon)^{2}f_{n}(\zeta)^{2}}{3f_{n}(\varepsilon)^{2}(f_{n}(\zeta) - f_{n}(\varepsilon))} \right\} \rho^{2} + o(\rho^{2}).$$

Since $f_n(\zeta)$ is the extremal function, we have for each ω with sufficiently small $|\omega|$,

(17)
$$\frac{\omega(2-\omega)\varepsilon^2 f'_n(\varepsilon)^2}{3f_n(\varepsilon)} \sum_{k=2}^n \frac{a_n^{(k)}}{f_n(\varepsilon)^k} - \frac{2\omega}{3(1+\omega)^2} \{(n-1)a_n + 2 \mathscr{R} \sum_{k=1}^{n-1} k\bar{\varepsilon}^{n-k}a_k\} \ge 0.$$

Thus we see that for the extremal function $f_n(z)$ in S which gives the maximum value of the real part of a_n ,

(18)
$$(n-1)a_n + 2 \mathscr{B} \sum_{k=1}^{n-1} k \bar{\varepsilon}^{n-k} a_k = \frac{\varepsilon^2 f'_n(\varepsilon)^2}{f_n(\varepsilon)} \sum_{k=2}^n \frac{a_n^{(k)}}{f_n(\varepsilon)^k}$$

on C.

By (12) the function $q(z) = (z^2 f'_n(z)^2 / f_n(z)) \sum_{k=2}^n (a_n^{(k)} / f_n(z)^k)$ is real on C, and hence we see by the Schwarz reflection principle that q(z) is a rational function. By (18) the value of q(z) is equal to that of the rational function $(n-1)a_n + \sum_{k=1}^{n-1} k(a_k/z^{n-k} + \bar{a}_k z^{n-k})$ on C, so that we have the following result of Schiffer [1]: For the extremal function $f_n(z)$,

(19)
$$\frac{z^2 f'_n(z)^2}{f_n(z)} \sum_{k=2}^n \frac{a_n^{(k)}}{f_n(z)^k} = (n-1)a_n + \sum_{k=1}^{n-1} k \Big(\frac{a_k}{z^{n-k}} + \bar{a}_k z^{n-k} \Big).$$

References

- Schiffer, M.: A method of variation within the family of simple functions, Proc. London Math. Soc., 44 (1938), 432–449.
- [2] Schiffer, M.: On the coefficients of simple functions, ibid., 450-452.

Mathematical Institute Nagoya University

276